HOUSTON CREEK FLOOD STUDY FINAL REPORT

FOR

DCED FLOOD MITIGATION PROGRAM

LOWER GWYNEDD TOWNSHIP MONTGOMERY COUNTY, PA

FILE NO. 21-02081

DATE: JULY 2023

Prepared For:

Lower Gwynedd Township 1130 N. Bethlehem Pike Spring House, PA 19477 (215) 646-5302

Prepared By:

Gilmore & Associates, Inc. Engineers ◆ Land Surveyors ◆ Planners ◆ GIS Consultants 65 E. Butler Avenue New Britain, PA 18901 (215) 345-4330

This project was financed in part by a grant from the Commonwealth Financing Authority

TABLE OF CONTENTS

PLAN	N PREPA	ARER INFORMATION	1
1.0		JECT DESCRIPTION	
2.0		DY ANALYSES	
	2.1		
	2.2	RATE/VOLUME REDUCTION ANALYSIS	
	2.3	HEC-RAS CALCULATIONS	
	2.4	LOCALIZED NEIGHBORHOOD FLOODING	
3.0		OMMENDATIONS	
APPE	NDIX A	A – Existing drainage aerial & fema flood map	
APPE	NDIX B	3 – Proposed Improvements aerial	
APPE	ENDIX C	C – RUNOFF CALCULATIONS & BASIN ROUTINGS	

APPENDIX D – OPINION OF PROBABLE COSTS

STUDY PREPARER INFORMATION

NAME OF PLAN PREPARER: James J. Hersh, P.E.

FORMAL EDUCATION:

Name of College or Technical Institute:Northeastern UniversityCurriculum or Program:Civil EngineeringDates of Attendance:2003 - 2008Degree Received:Bachelor of Science in Civil Engineering

EMPLOYMENT HISTORY:

Current Employer: <u>Gilmore & Associates, Inc.</u> Telephone: (215) 345-4330

STUDY NARRATIVE

1.0 PROJECT DESCRIPTION

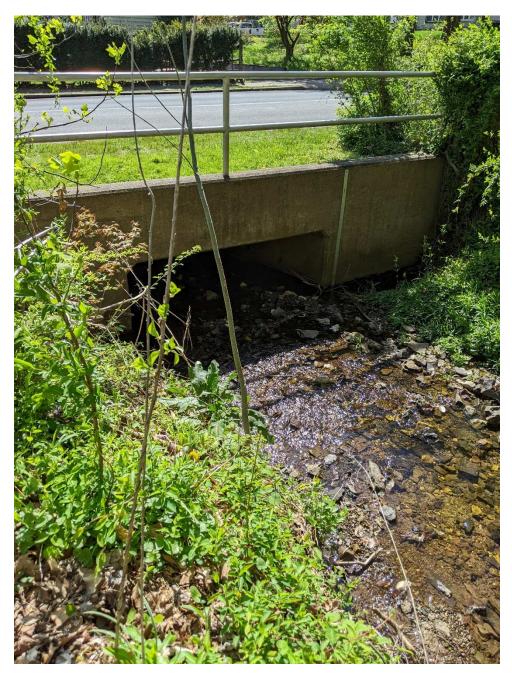
In response to consistent flooding within Lower Gwynedd Township around the Houston Creek, tributary to the Wissahickon Creek, the Lower Gwynedd Board of Supervisors applied to, and were subsequently awarded funds from the Commonwealth Financing Authority – Flood Mitigation Program for a study of the subject area. The goal of the study being to identify potential projects which could be implemented to reduce the frequency and severity of flooding in the area.

The total study area is the 280-acre Houston Creek watershed, as identified on the aerial map contained in Appendix A. Also included within Appendix A is FEMA Flood Insurance Map 42091C0286G, which identifies the project area as containing Zone A (100-year floodplain with no Base Flood Elevations). Available existing HEC-RAS (Hydraulic Engineering Center – River Analysis System) data was received from FEMA and used as a base for the HEC-RAS calculations compiled as part of the project. An on-site survey was performed to supplement the data received from FEMA and generate accurate cross sections at various obstructions (bridges, culverts, dam, etc.) throughout the study section of the creek. The existing drainage area was estimated using a combination of available LiDAR (light imaging and ranging) contours, aerial photography, land development plans, and on-site investigations. Runoff calculations were completed utilizing the SCS (Soil Conservation Service) 24-hour Type II storm distribution with inputs from the NOAA (National Oceanic and Atmospheric Association) Point Precipitation Estimates for this location in Lower Gwynedd. The runoff analyses were completed for the 2-year and 100-year recurrence intervals.

The study is structured into three separate analyses: Conveyance Capacity at creek obstructions, Runoff Rate / Volume reduction, and investigation and evaluation of localized neighborhood flooding issues.

2.0 STUDY ANALYSES

2.1 CONVEYANCE CAPACITY ANALYSIS


The stream begins at headwaters just north of an existing dam on the Wissahickon School District property. From the outlet of the gabion dam, the creek flows south before crossing under Knight Road via a box culvert, then traversing the rear yards of residential properties along Brookside Avenue and Marion Avenue before crossing under Spring Garden Street via a box culvert and continuing under the parking lot for the Ambler Yards development. The creek continues in a combination of box culvert and triple 36" reinforced concrete pipes as it travels under Building #19 within the Ambler Yards development before entering an open channel and discharging under SEPTA tracks via a combination box culvert and elliptical corrugated metal pipe. From the dam to the SEPTA culvert, there are various obstructions within the creek that were analyzed using Mannings Equation for open channel flow. The purpose of the analysis was to determine

if any "pinch points" exist where capacity is substantially reduced due to inadequate capacity at an obstruction that doesn't match the upstream and downstream capacity in the stream channel. The following pages contain photographs of various obstructions within the creek along with their corresponding capacities as calculated utilizing Mannings Equation:

DAM ON SCHOOL DISTRICT PROPERTY

Knight Road Culvert - Upstream

Knight Road - Downstream

	Box Culvert in Knight Road									
	Open-Channel Flow Calculations - Rectangle									
Q =	Av									
=	(1.49/n)AR	^(2/3)S/	(2/3)S^(1/2)							
n =	0.013	concret	e or RC	CP						
d =	2.667	ft =	32	in (depth of rectangle)						
w =	8.000	ft =	96	in (width of rectangle)						
A =	21.33	ft ² (Area	a of rec	ctangle)						
P =	21.33	ft (Wet	ted Peri	imeter)						
R =	1.000	ft (Hydr	aulic Ra	adius)						
S =	0.0565	=	5.65%							
	Length =	55	ft							
-	Top Elev =	242.02								
Bott	tom Elev =	238.91								
Q =	581.43	cfs								
v =	Q/A =	27.25	ft/s							

PED BRIDGE 450 MARION AVE.

4' high x 10' wide opening available for flow.

SLAB BRIDGE 448 MARION AVE.

	Box Culvert Driveway Bridge								
	Open-Channel Flow Calculations - Rectangle								
Q =	Av								
=	(1.49/n)AR	^(2/3)S/	·(1/2)						
n =	0.013	concret	e or RC	Р					
d =	4.333	ft =	52	in (depth o	of rectangle	2)			
w =	11.000	ft =	132	132 in (width of rectangle)					
A =	47.67	ft ² (Area	a of rec	tangle)					
P =	30.67	ft (Wett	ted Peri	meter)					
R =	1.554	ft (Hydr	aulic Ra	idius)					
S =	0.0575	=	5.75%						
	Length =	12	ft						
-	Top Elev =	236.55							
Bott	tom Elev =	235.86							
Q =	1,757.88	cfs							
v =	Q/A =	36.88	ft/s						

DRIVEWAY BRIDGE 446 MARION AVE.

	2 RCP Pipe Culvert Driveway Bridge										
	Open-Channel Flow Calculations - Full or 1/2 Full Circle										
Q =	Av										
=	(1.49/n)AR	^(2/3)S/	`(1/2)								
n =	0.013	concret	e or RC	Р							
d = D =	3.667	ft =	44	in (depth o	f water = d	iameter of	pipe)				
A =	5.28	ft ² (Area	a of pip	e)							
P =	9.43	ft (Wett	ted Peri	meter)							
R =	0.560	ft (Hydr	aulic Ra	adius)							
S =	0.0567	=	5.67%								
	Length =	12	ft								
	Top Elev =	234.71									
Bott	tom Elev =	234.03									
Q =	97.88	cfs									
v =	Q/A =	18.54	ft/s								
Tot	al Flow Cap	acity =	195.8	cfs							

Spring Garden – Culvert (2) 68"x42" Elliptical Pipes transition to 8'x4' Box Culvert

	Second Stretch of Culvert in Spring Garden Street: One 8'x4' RCP Box									
	Open-Channel Flow Calculations - Rectangle									
Q =	Av									
=	(1.49/n)AR	^(2/3)S/	`(1/2)							
n =	0.013	concret	oncrete or RCP							
d =	4.000	ft =	48 in (depth of rectangle)							
w =	8.000	ft =	96	in (width o	of rectangle	e)				
A =	32.00	ft ² (Area	a of rec	tangle)						
P =	24.00	ft (Wett	ted Peri	meter)						
R =	1.333	ft (Hydr	aulic Ra	idius)						
S =	0.0227	=	2.27%							
	Length =	391	ft							
-	Top Elev =	210.00								
Bott	om Elev =	201.13								
Q =	669.20	cfs								
v =	Q/A =	20.91	ft/s							

*Capacity reduced to 250 CFS if assume rock / silted bottom.

36" PIPES UNDER BUILDING 19 @ AMBLER YARDS

	(3) 36" PIPES UNDER BUILDING #19									
	Open-Channel Flow Calculations - Full or 1/2 Full Circle									
Q =	Av									
=	(1.49/n)AR	^(2/3)S/	<u>(1/2)</u>							
n =	0.013	concret	e or RC	Р						
d = D =	3.000	ft =	= 36 in (depth of water = diameter of pipe)							
A =	7.07	ft ² (Area	t ² (Area of pipe)							
P =	9.42	ft (Wett	ted Peri	meter)						
R =	0.750	ft (Hydr	aulic Ra	idius)						
S =	0.0152	=	1.52%							
	Length =	165	ft							
	Top Elev =	202.50								
Bott	om Elev =	200.00								
Q =	82.32	cfs								
v =	Q/A =	11.65	ft/s							
Tot	al Flow Cap	acity =	247	cfs						

Looking from Building 19 toward SEPTA

SEPTA CULVERT @ AMBLER YARDS

	SEPTA CULVERT - AMBLER YARDS								
		hannel I	low Ca	lculations -	Full or 1/2	Full Circle			
Q =									
=	(1.49/n)AR	^(2/3)S/	<u>(1/2)</u>						
n =	0.013	concret	e or RC	Р					
d = D =	5.500	ft =	66	in (depth o	of water = d	liameter of	pipe)		
A =	23.76	ft ² (Area	a of pipe	e)					
P =	17.28	ft (Wet	ted Peri	meter)					
R =	1.375	ft (Hydr	aulic Ra	dius)					
S =	0.0100	=	1.00%						
	Length =	100	ft						
-	Top Elev =	198.00							
Bott	tom Elev =	197.00							
Q =	336.71	cfs							
v =	Q/A =	14.17	ft/s						
	Ор	en-Cha	nnel Flo	w Calculat	ions - Recta	angle			
Q =	Av								
=	(1.49/n)AR	^(2/3)S/	`(1/2)						
n =	0.013	concret	e or RC	Р					
d =	5.167	ft =	62	in (depth o	of rectangle)			
w =	4.000	ft =	48	in (width o	f rectangle)			
A =	20.67	ft ² (Area	a of rect	tangle)					
P =	18.33	ft (Wet	ted Peri	meter)					
R =	1.127	ft (Hydr	aulic Ra	dius)					
S =	0.0100	=	1.00%						
	Length =	100	ft						
	Top Elev =	198.00							
Bottom Elev =		197.00							
Q =	256.57	cfs							
v =	Q/A =	12.41	ft/s						
Total I	Flow = Q =	593.28	cfs						

Based on the calculations, there are two identified "pinch points" where flow within the creek is being significantly impacted by culverts that do not have adequate capacity to convey flow. The first "pinch point" is a concrete bridge culvert that serves as the driveway to the rear of a dwelling located at 446 Marion Avenue. The subject culvert has the capacity to convey 195 cubic feet per second while the immediately upstream box culvert under Knight Road has capacity to convey 580 cubic feet per second. The drastic capacity reduction of at the driveway culvert causes overflows onto Brookside Avenue. Since this driveway culvert is situated on private property, outside of the Township's right-of-way, the recommendation is for the Township to work with the property owner to have the driveway bridge either removed or replaced with a box culvert that will have increased capacity.

The other identified "pinch point" is on the Ambler Yards property where creek transitions from a 4'x8' box culvert with 670 cubic feet per second of capacity to a configuration of three (3) 36" pipes with a total capacity of 247 cubic feet per second. The recommendation to Ambler Yards is to explore replacing the triple 36" pipes with a 12'W x 3'H box culvert that would have capacity to carry 700 cubic feet per second.

Lastly, the additional recommendation that comes out of the performed capacity analysis is related to the Township engaging PennDOT to discuss continued maintenance of the culvert that carries the stream under Spring Garden Street. This culvert is owned by PennDOT and at the time of investigation there was observed accumulated sediment in the bottom of the culvert. Accumulated sediment and debris have the potential to significantly reduce the carry capacity of the culvert so continuous maintenance is key to keeping the maximum capacity ahead of large rain events.

2.2 RATE / VOLUME REDUCTION ANALYSIS

In conjunction with the capacity analysis, runoff rate/volume calculations were conducted to identify existing flows to certain study points and then calculate the rate reductions that could be achieved by implementing stormwater facilities which would serve to reduce rate and volume of runoff to the creek.

For rate analysis, study points of Knight Road, Spring Garden Culvert, and SEPTA tracks culvert were utilized to demonstrate the potential rate reductions that can be achieved. Proposed Best Management Practice (BMP) locations were identified via desktop analysis, site walks, and evaluation of available land development plans. Existing stormwater BMPs within the study area are very limited and consist of a basin adjacent to the Wissahickon School District (WSD) administration building, an existing dam on the WSD property, and an underground basin that was installed on Ambler Yards property as part of a redevelopment in 2018. Existing & Proposed BMPs are delineated on the aerial exhibit plan included in Appendix B of this report.

Potential BMP locations were identified as the following:

Retrofit Existing Dam w/ Multi-Level Outlet Structure

The existing dam on the WSD property is constructed of concrete and gabion baskets with a singular outlet pipe located at the bottom of the dam. The outlet pipe is a 30"x48" elliptical pipe that doesn't provide much rate reduction in smaller storms. The potential exists to install a smaller orifice at the bottom of the dam to attenuate the smaller storms and then have a larger discharge at higher elevations to control against overflow in larger rain events. However, when evaluated and routed through the Hydroflow modeling software, this option proved unfeasible because while the flow rate was reduced in smaller storms (1-year to 5-year), it was increased in larger storms (10-year to 100-year). All runoff calculations and routings are included in Appendix C. Below table provides a pre/post rate comparison for the outlet structure reconfiguration:

MODIFY DAM OUTLET CONTROL STRUCTURE									
PEAK FLOW SUMMARY (DAM OUTLET)									
	1 YR	2 YR	5 YR	10 YR	25 YR	50 YR	100 YR		
Pre-Development Flow (cfs)	101.3	122.5	143.6	155.3	188.8	303.9	452.9		
Post-Development Flow (cfs) 58.7 75.1 133.8 161.0 267.2 389.1 545.2									
Flow Reduction (%)	-42%	-39%	-7%	4%	42%	28%	20%		

Enlarge Dam Impoundment & Modify Outlet Structure

To provide rate reductions in all storms, it was determined that increasing volume behind the dam was necessary in addition to modifying the outlet control structure. To achieve the additional capacity volume, a forest area would need to be cleared along with the excavation and removal of the earth. It's unclear at this time whether rock excavation would be required; however, due to the proximity to the creek bed, it is assumed that some rock would need to be removed to achieve the volume considered in the routing calculations. Rate reductions from this alternative are in the tale below and represent reductions across all analyzed storms:

MODIFY DAM OUTLET STRUCTURE / INCREASE IMPOUNDMENT AREA								
P	EAK FLO	W SUMN			DAD)			
1 YR 2 YR 5 YR 10 YR 25 YR 50 YR 100 YR								
Pre-Development Flow (cfs)	178.2	224.7	288.0	338.3	424.8	624.9	883.5	
Post-Development Flow (cfs)	83.2	120.6	177.6	231.8	310.4	387.6	489.4	
Flow Reduction (%)	-53%	-46%	-38%	-31%	-27%	-38%	-45%	
PE	AK FLOV	V SUMM	ARY (AM	BLER YA	ARDS)			
	1 YR	2 YR	5 YR	10 YR	25 YR	50 YR	100 YR	
Pre-Development Flow (cfs)	241.9	312.5	410.1	490.2	628.3	870.6	1188.9	
Post-Development Flow (cfs)	144.7	206.2	299.8	387.9	509.0	636.1	772.1	
Flow Reduction (%)	-40%	-34%	-27%	-21%	-19%	-27%	-35%	

New Basin (Houston & Knight Road)

While available land for the implementation of new BMPs within the study area is limited, the corner of Houston & Knight Road was identified as a potential location for a new stormwater basin. This property is currently wooded and owned by the Wissahickon School District. Drainage from approximately 21 acres comprised of Houston Road and the WSD High School parking lot drain through this area before ultimately discharging to the creek just above the Knight Road culvert. By capturing and providing peak rate attenuation in this area the potential exists to provide the rate reductions as outlined in the table below:

NEW BA	ASIN @	HOUST	ON / KN	NGHT (OPTION	I 3)	
PI	EAK FLO	W SUMN	/ARY (KI	NIGHT RO	DAD)		
1 YR 2 YR 5 YR 10 YR 25 YR 50 YR 100 YR							
Pre-Development Flow (cfs)	182.2	234.9	308.2	365.3	444.9	546.2	779.6
Post-Development Flow (cfs)	151.6	191.1	244.1	284.2	338.8	437.5	638.0
Flow Reduction (%)	-17%	-19%	-21%	-22%	-24%	-20%	-18%
PE	AK FLOV	V SUMM	ARY (AM	BLER YA	ARDS)		
	1 YR	2 YR	5 YR	10 YR	25 YR	50 YR	100 YR
Pre-Development Flow (cfs)	245.0	321.7	431.5	518.5	643.3	798.7	1096.8
Post-Development Flow (cfs)	215.0	277.6	367.2	440.8	537.3	691.0	952.4
· · · ·							
Flow Reduction (%)	-12%	-14%	-15%	-15%	-16%	-13%	-13%

Combined Flow Reduction (Houston/Knight Basin & Dam Enlargement)

The analysis was run to determine the maximum flow reduction that could be achieved in this part of the drainage basin by implementing both potential improvements:

NEW BASIN (HOUST	ON / KNI	IGHT) +	DAM E	IGLARC	BEMENT	/MODIF	ICATION	
PEAK FLOW SUMMARY (KNIGHT ROAD)								
	1 YR	2 YR	5 YR	10 YR	25 YR	50 YR	100 YR	
Pre-Development Flow (cfs)	182.2	234.9	308.2	365.3	444.9	546.2	779.6	
Post-Development Flow (cfs)	61.7	90.4	137.2	173.1	238.1	287.9	357.5	
Flow Reduction (%)	-66%	-62%	-55%	-53%	-46%	-47%	-54%	
PE	AK FLOV	V SUMM	ARY (AM	BLER YA	ARDS)			
	1 YR	2 YR	5 YR	10 YR	25 YR	50 YR	100 YR	
Pre-Development Flow (cfs)	245.0	321.7	431.5	518.5	643.3	798.7	1096.8	
Post-Development Flow (cfs)	124.3	175.4	258.0	325.4	437.8	526.0	651.8	
Flow Reduction (%)	-49%	-45%	-40%	-37%	-32%	-34%	-41%	

2.3 HEC-RAS ANALYSIS

The Hydraulic Engineering Center – River Analysis System (HEC-RAS) was utilized to analyze the effects of recommended improvements on the floodplain elevation at various stream cross-sections throughout the study area. Included in the report are exhibits depicting the existing and proposed limits of the 2-year and 100-year floodplain based on the following combinations of recommended improvements:

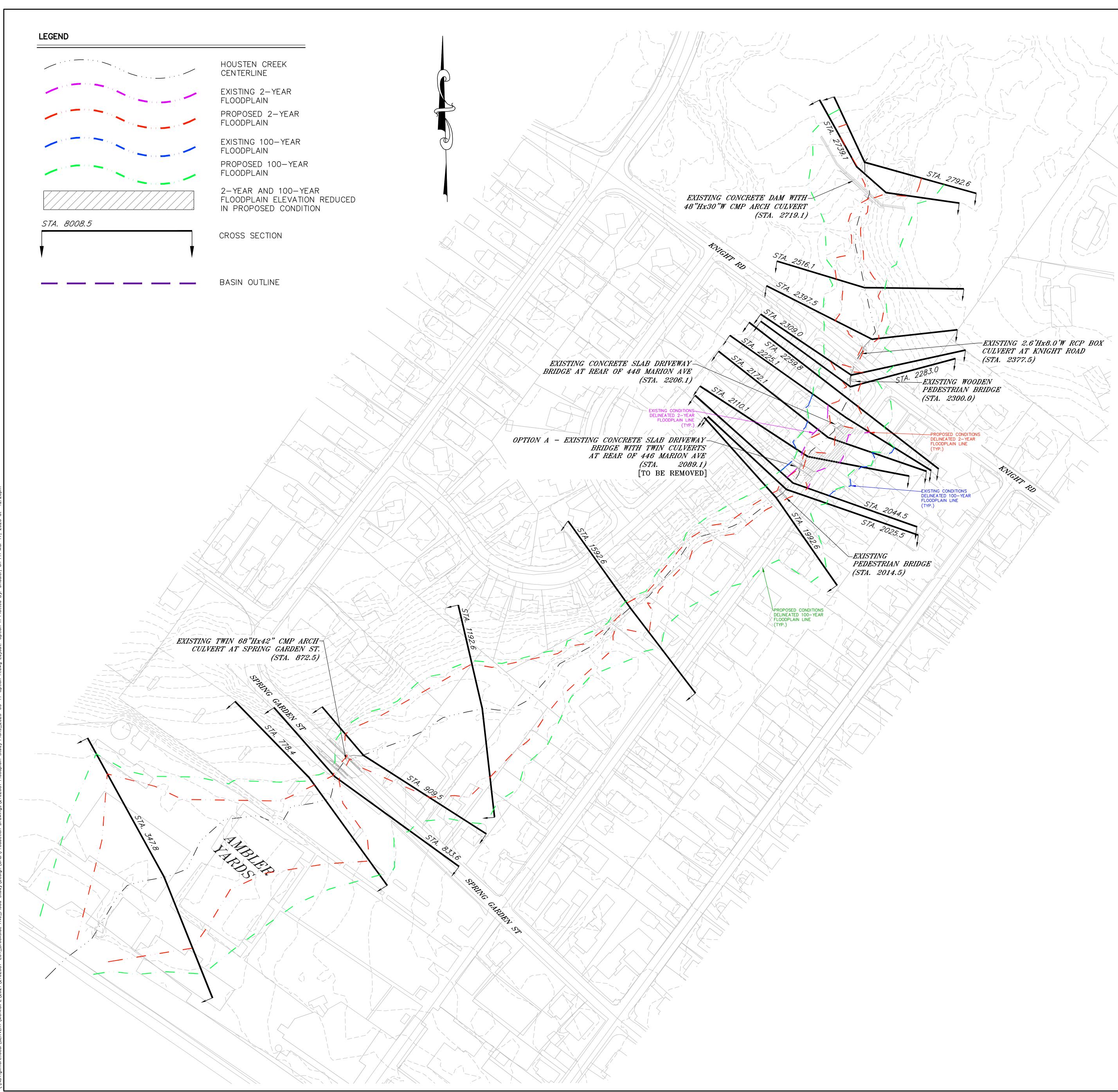
Option A – Remove and/or Increase Capacity at 446 Marion Driveway Bridge

The 2-year flood depth is reduced by 9-23" at cross-sections 2172 and 2110, which are located immediately upstream of the subject driveway bridge. This depth of flow reduction correlates to a reduction in the overall width of the 2-year floodplain in this area and would serve to reduce the frequency of water overflowing the creek banks onto Brookside Avenue. 100-year flood depth reductions are approximately 2-3" because of the bridge removal; however, the overall width of the 100-year floodplain is only nominally affected by this improvement.

Option B - New Stormwater Basin @ Houston / Knight Road

The 2-year flood depth is reduced throughout the entire study area by depths in the range of 3-10" because of the reduced rates that can be achieved through the implementation of this project. Additionally, the 100-year floodplain is reduced throughout the study area by depths between 2-4". Again, the overall width of the 100-year floodplain is impacted only minimally from this improvement.

Option C – Enlarge Dam Impoundment & Modify Outlet Control Structure

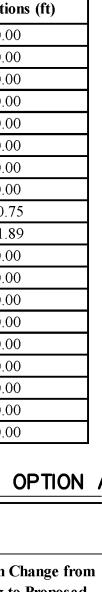

The 2-year flow depth is reduced in the range of 3-20" throughout the study area and the 100-year flow depth is reduced in the range of 3-10". While this improvement represents the most improvement in 100-year flow depth of Options A, B, and C, the width reduction of the 100-year floodplain does not serve to remove buildings from the limits of the calculated floodplain.

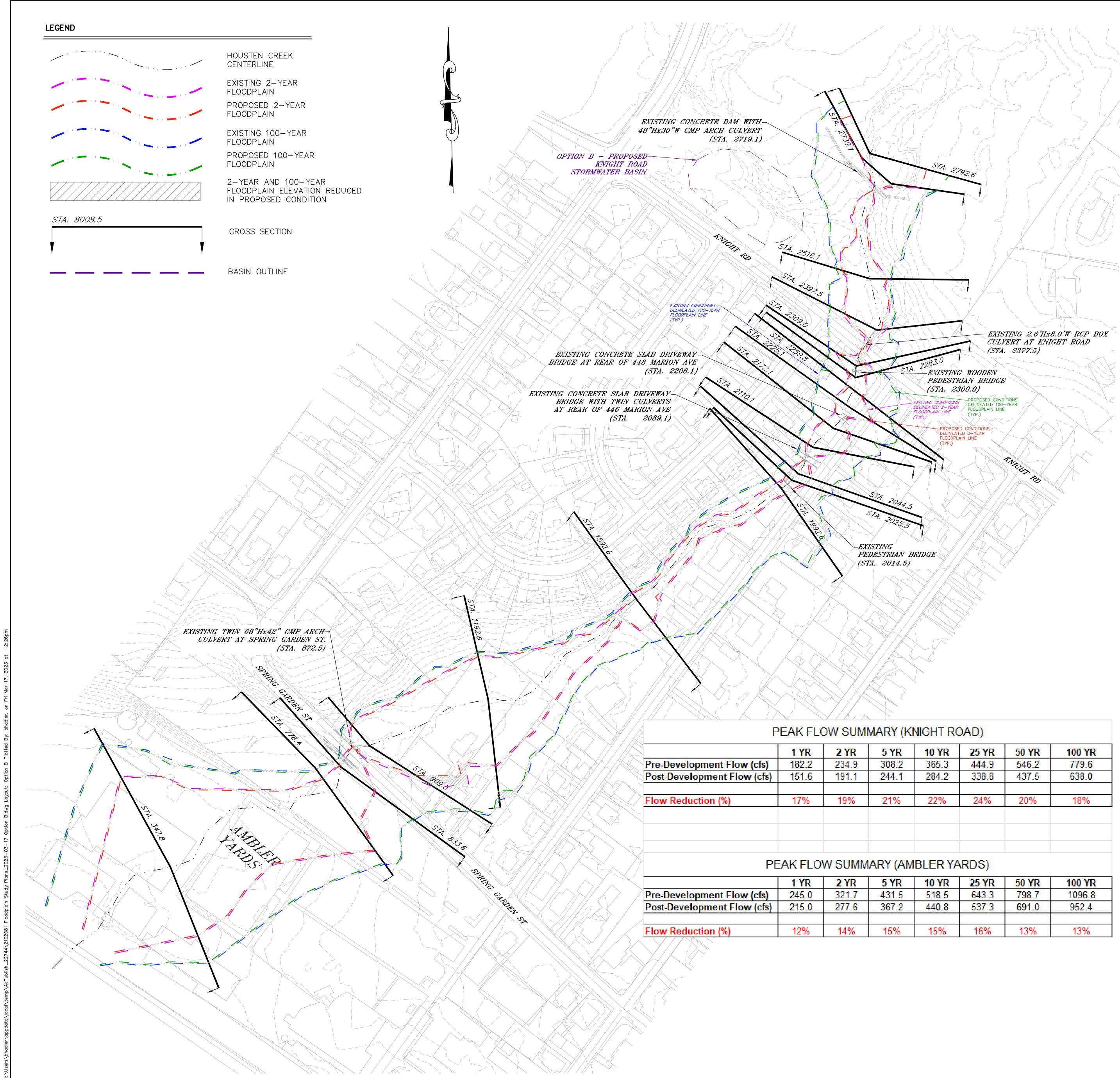
Option D – Combination of A, B & C.

The 2-year flow depth is reduced in the range of 3-34" throughout the study area and the 100-year flow depth is reduced in the range of 4-18". This iteration of the HEC-RAS analysis represents the greatest reduction in flow depth for the 2-year and 100-year storms. While the 100-year floodplain is not reduced to a point where dwellings would be removed from the floodplain limits, there are several areas along Brookside Avenue where the width of flow from the 100-year event is reduced by up to 35-feet.

Option E – Combination of A & B

The 2-year flow depth is reduced between 3-25" throughout the study area and the 100year flow depth is reduced between 3-7". This iteration was run to show the potential improvement of Options A & B should they be implemented prior to the larger undertaking that is an expansion of the existing dam.


2-YEAR FLOODPLAIN WATER SURFACE ELEVATIONS - OPTION A


Cross-Section	Existing Conditions 2-Yr W.S.E. (ft)	Proposed Conditions 2-Yr W.S.E. (ft)	Elevation Change from Existing to Proposed Conditions (ft)	
2792.6	258.85	258.85	0.00	
2739.1	258.85	258.85	0.00	
2516.1	245.88	245.88	0.00	
2397.5	244.38	244.38	0.00	
2309.0	242.12	242.12	0.00	
2283.0	240.51	240.51	0.00	
2259.8	240.07	240.07	0.00	
2225.1	240.25	240.25	0.00	
2172.1	238.56	237.81	-0.75	
2110.1	237.66	235.77	-1.89	
2044.5	235.04	235.04	0.00	
2025.5	234.79	234.79	0.00	
1992.6	233.77	233.77	0.00	
1592.6	228.25	228.25	0.00	
1192.6	220.04	220.04	0.00	
909.5	217.75	217.75	0.00	
833.6	215.09	215.09	0.00	
778.4	214.65	214.65	0.00	
347.8	205.56	205.56	0.00	

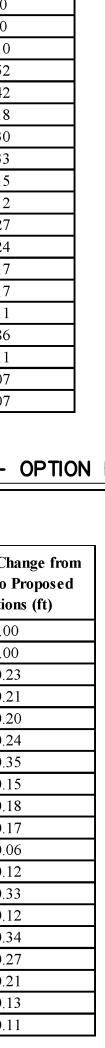
100-YEAR FLOODPLAIN WATER SURFACE ELEVATIONS - OPTION A

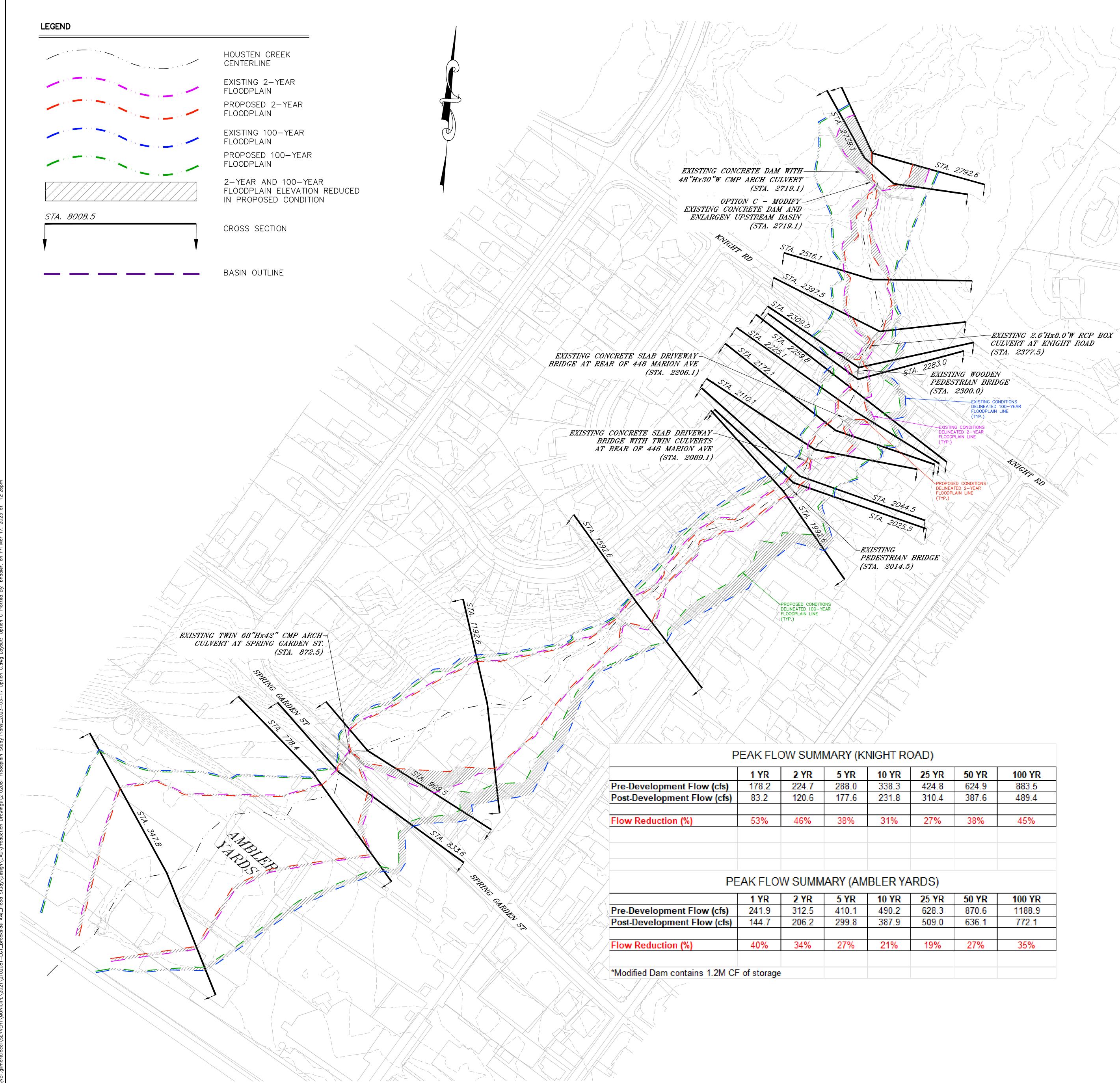
Cross-Section	Existing Conditions 100-Yr W.S.E. (ft)	Proposed Conditions 100-Yr W.S.E. (ft)	Elevation Change from Existing to Proposed Conditions (ft)
2792.6	260.54	260.54	0.00
2739.1	260.54	260.54	0.00
2516.1	246.90	246.90	0.00
2397.5	245.51	245.51	0.00
2309.0	243.77	243.77	0.00
2283.0	242.37	242.37	0.00
2259.8	241.78	241.78	0.00
2225.1	242.15	242.15	0.00
2172.1	239.89	239.69	-0.20
2110.1	239.00	238.78	-0.22
2044.5	237.09	237.09	0.00
2025.5	237.21	237.21	0.00
1992.6	235.90	235.90	0.00
1592.6	229.63	229.63	0.00
1192.6	221.17	221.17	0.00
909.5	221.02	221.02	0.00
833.6	216.47	216.47	0.00
778.4	215.48	215.48	0.00
347.8	206.40	206.40	0.00

GILMORE	EXHBIT LOWER GWYNEDD TOWNSHIP –				
	HOUSTEN CREEK FLOODPLAIN STUDY				CORPORATE HEADQUARTERS 65 EAST BUTLER AVENUE, SUITE 100, NEW BRITAIN, PA 18901 • (215) 345-4330 • www.gilmore-assoc.com
	LOWER GWYNEDD TOWNSHIP, MONTGOMERY COUNTY, PENNSYLVANIA				ONLY THOSE PLANS INCORPORATING THE PROFESSIONAL SEAL SHOULD BE CONSIDERED OFFICIAL AND RELIED UPON BY USER. THIS PLAN IS
	OPTION A - REMOVE DRIVEWAY BRIDGE AT STA 20891				PREPARED SPECIFICALLY FOR THE CLIENT AND PROJECT DESIGNATED HEREON. MODIFICATION, REVISION, DUPLICATION OR USE WITHOUT THE CONSENT OF CUMORE 3, ASSOCIATES INC. IS DEDUNDED
		REV.	DESCRIPTION	DATE BY	©COPYRIGHT 2022 GILMORE & ASSOCIATES, INC. 13 FROMINILLU.

2-YEAR FLOODPLAIN WATER SURFACE ELEVATIONS - OPTION B

Cross-Section	Existing Conditions 2-Yr W.S.E. (ft)	Proposed Conditions 2-Yr W.S.E. (ft)	Elevation Change from Existing to Proposed Conditions (ft)	
2792.6	258.85	258.85	0.00	
2739.1	258.85	258.85	0.00	
2516.1	245.88	245.78	-0.10	
2397.5	244.38	243.86	-0.52	
2309.0	242.12	241.70	-0.42	
2283.0	240.51	240.33	-0.18	
2259.8	240.07	239.77	-0.30	
2225.1	240.25	239.92	-0.33	
2172.1	238.56	238.41	-0.15	
2110.1	237.66	237.54	-0.12	
2044.5	235.04	234.77	-0.27	
2025.5	234.79	234.55	-0.24	
1992.6	233.77	233.60	-0.17	
1592.6	228.25	228.08	-0.17	
1192.6	220.04	219.93	-0.11	
909.5	217.75	216.89	-0.86	
833.6	215.09	214.98	-0.11	
778.4	214.65	214.58	-0.07	
347.8	205.56	205.49	-0.07	


100-YEAR FLOODPLAIN WATER SURFACE ELEVATIONS - OPTION B


Cross-Section	Existing Conditions 100-Yr W.S.E. (ft)	Proposed Conditions 100-Yr W.S.E. (ft)	Elevation Cha Existing to P Condition
2792.6	260.54	260.54	0.00
2739.1	260.54	260.54	0.00
2516.1	246.90	246.67	-0.23
2397.5	245.51	245.30	-0.21
2309.0	243.77	243.57	-0.20
2283.0	242.37	242.13	-0.24
2259.8	241.78	241.43	-0.35
2225.1	242.15	242.00	-0.15
2172.1	239.89	239.71	-0.18
2110.1	239.00	238.83	-0.17
2044.5	237.09	237.03	-0.06
2025.5	237.21	237.09	-0.12
1992.6	235.90	235.57	-0.33
1592.6	229.63	229.51	-0.12
1192.6	221.17	220.83	-0.34
909.5	221.02	220.75	-0.27
833.6	216.47	216.26	-0.21
778.4	215.48	215.35	-0.13
347.8	206.40	206.29	-0.11

%	22%	24%	20%	18%

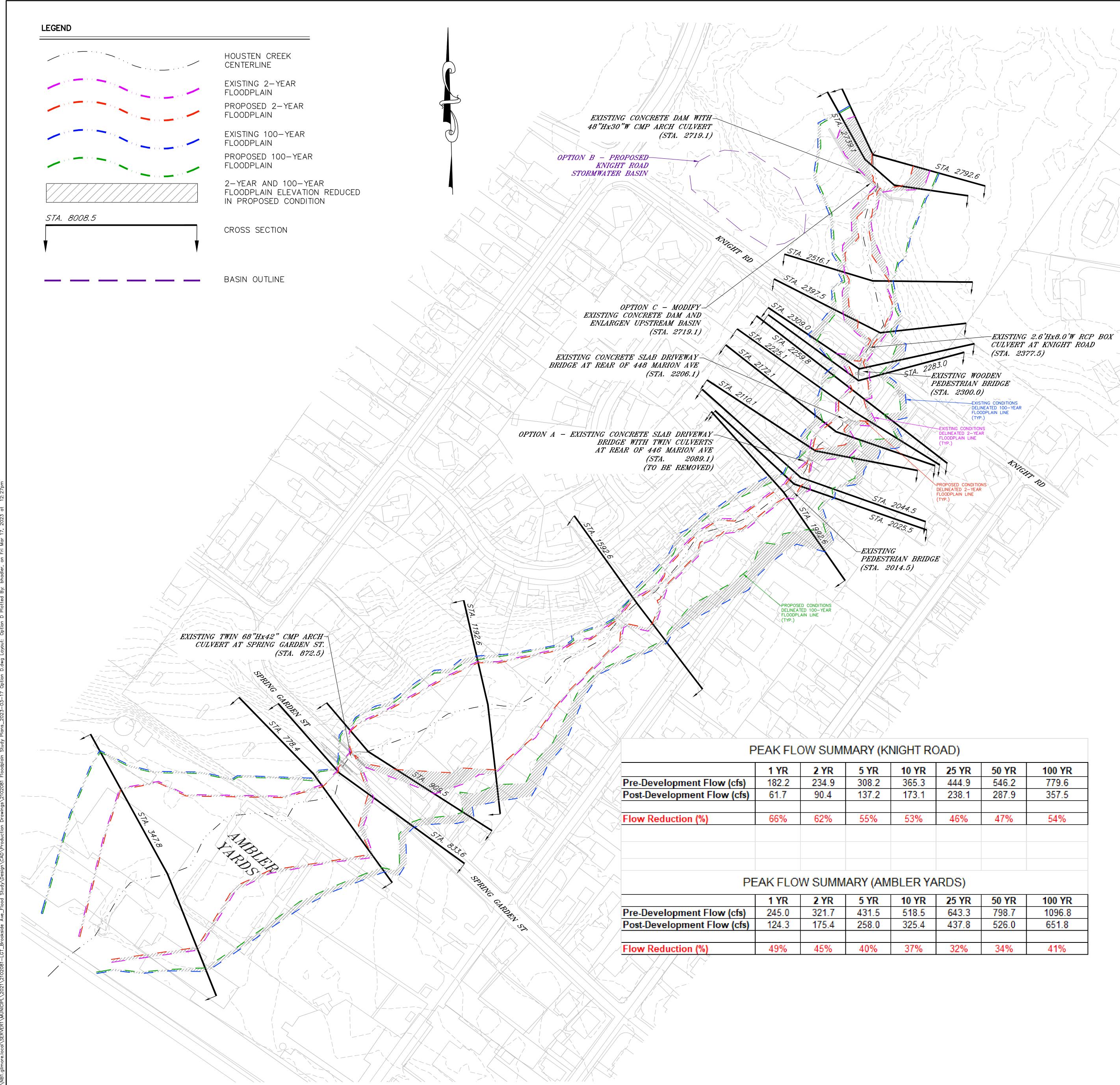
YR	10 YR	25 YR	50 YR	100 YR
1.5	518.5	643.3	798.7	1096.8
7.2	440.8	537.3	691.0	952.4
%	15%	16%	13%	13%

G GII MORE & ASSOCIATES, INC.	CONSULTING SERVICES CORPORATE HEADQUARTERS 65 EAST BUTLER AVENUE, SUITE 100, NEW BRITAIN, PA 18901 • (215) 345-4330 • www.gilmore-assoc.com	ONLY THOSE PLANS INCORPORATING THE PROFESSIONAL SEAL SHOULD BE CONSIDERED OFFICIAL AND RELIED UPON BY USER. THIS PLAN IS	PREPARED SPECIFICALLY FOR THE CLIENT AND PROJECT DESIGNATED HEREON. MODIFICATION, REVISION, DUPLICATION OR USE WITHOUT THE CONSENT OF CUMPERS. ASSOCIATES INCLUE BECHINGTED	©COPYRIGHT 2022 GILMORE & ASSOCIATES, INC. 13 FROMINIELD.		
				BY		
				DATE		
				DESCRIPTION		
				REV.		
EXHIBIT	LOWER GWYNEDD TOWNSHIP – Housten creek floodplain study	LOWER GWYNEDD TOWNSHIP, MONTGOMERY COUNTY, PENNSYLVANIA	OPTION R - HOUSTEN /KNIGHT ROAD BASIN			
ENGI PROJE	GILMORE & ASSOCIATES, INC. ENGINEERING & CONSULTING SERVICES PROJECT No.: 2021–02081 OWNERS INFO:					
TAX M TOTAL DATE: 03/ DRAW	IPAL FILE AP PARCI AREA: (17/23 N BY: BH T NO.: 2 C	- EL No. TOTAL SCALE 1" CHECK	LOTS ==80' (ED B DPB			

	1 YR	2 YR	5 YR	10 YR	25 YR	50 YR	100 YR
Pre-Development Flow (cfs)	178.2	224.7	288.0	338.3	424.8	624.9	883.5
Post-Development Flow (cfs)	83.2	120.6	177.6	231.8	310.4	387.6	489.4
Flow Reduction (%)	53%	46%	38%	31%	27%	38%	45%
PE	AK FLO	W SUMM	ARY (AM	BLER YA	RDS)		

	1 YR	2 YR	5 YR	10 YR	25 YR	50 YR	100 YR
Pre-Development Flow (cfs)	241.9	312.5	410.1	490.2	628.3	870.6	1188.9
Post-Development Flow (cfs)	144.7	206.2	299.8	387.9	509.0	636.1	772.1
Flow Reduction (%)	40%	34%	27%	21%	19%	27%	35%
*Modified Dam contains 1.2M CF	of storage						

2-YEAR FLOODPLAIN WATER SURFACE ELEVATIONS - OPTION C


Cross-Section	Existing Conditions 2-Yr W.S.E. (ft)	Proposed Conditions 2-Yr W.S.E. (ft)	Elevation Change from Existing to Proposed Conditions (ft)
2792.6	258.85	250.62	-8.23
2739.1	258.85	249.93	-8.92
2516.1	245.88	245.61	-0.27
2397.5	244.38	242.98	-1.40
2309.0	242.12	241.21	-0.91
2283.0	240.51	240.07	-0.44
2259.8	240.07	239.34	-0.73
2225.1	240.25	239.45	-0.80
2172.1	238.56	238.15	-0.41
2110.1	237.66	237.49	-0.17
2044.5	235.04	234.40	-0.64
2025.5	234.79	234.20	-0.59
1992.6	233.77	233.33	-0.44
1592.6	228.25	227.84	-0.41
1192.6	220.04	219.81	-0.23
909.5	217.75	216.02	-1.73
833.6	215.09	214.83	-0.26
778.4	214.65	214.49	-0.16
347.8	205.56	205.40	-0.16

100-YEAR FLOODPLAIN WATER SURFACE ELEVATIONS -

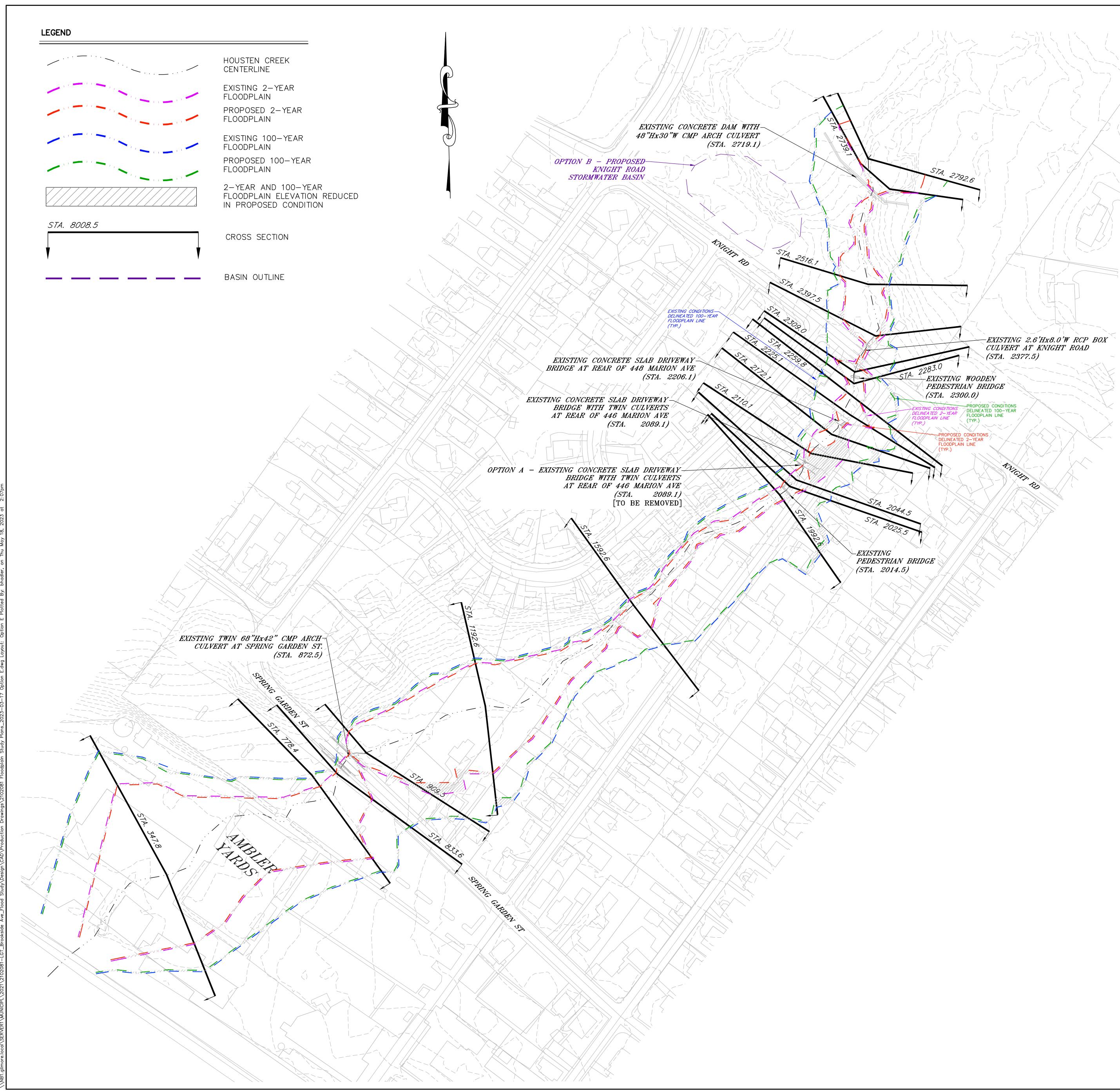
Cross-Section	Existing Conditions 100-Yr W.S.E. (ft)	Proposed Conditions 100-Yr W.S.E. (ft)	Elevation Change from Existing to Proposed Conditions (ft)
2792.6	260.54	259.89	-0.65
2739.1	260.54	259.89	-0.65
2516.1	246.90	246.44	-0.46
2397.5	245.51	245.12	-0.39
2309.0	243.77	243.36	-0.41
2283.0	242.37	241.83	-0.54
2259.8	241.78	241.24	-0.54
2225.1	242.15	241.83	-0.32
2172.1	239.89	239.51	-0.38
2110.1	239.00	238.62	-0.38
2044.5	237.09	236.95	-0.14
2025.5	237.21	236.96	-0.25
1992.6	235.90	235.01	-0.89
1592.6	229.63	229.62	-0.01
1192.6	221.17	220.42	-0.75
909.5	221.02	220.42	-0.60
833.6	216.47	216.02	-0.45
778.4	215.48	215.21	-0.27
347.8	206.40	206.14	-0.26

	<u> </u>	Ssoc.com	HOULD AN IS	NATED T THE	ERVED
	G GII MORE & ASSOCIATES INC	ENGINEERING & CONSULTING SERVICES CORPORATE HEADQUARTERS 65 EAST BUTLER AVENUE, SUITE 100, NEW BRITAIN, PA 18901 • (215) 345-4330 • www.gilmore-assoc.com	ONLY THOSE PLANS INCORPORATING THE PROFESSIONAL SEAL SHOULD BE CONSIDERED OFFICIAL AND RELIED UPON BY USER. THIS PLAN IS	PREPARED SPECIFICALLY FOR THE CLIENT AND PROJECT DESIGNATED HEREON. MODIFICATION, REVISION, DUPLICATION OR USE WITHOUT THE	© COPYRIGHT 2022 GILMORE & ASSOCIATES, INC. ALL RIGHTS RESE
					рате ву
e 					DESCRIPTION
ed					REV.
e from osed t)	EXHIBIT	LOWER GWYNEDD TOWNSHIP – Housten creek floodplain study	LOWER GWYNEDD TOWNSHIP, MONTGOMERY COUNTY, PENNSYLVANIA	OPTION C - MODIFY FXISTING DAM /FNI ARGF RASIN AT STA 2719.1	
	engii PROJE	ORE & ASS NEERING & CON CCT No.: 2021- RS INFO:			
		IPAL FILE 	_	:	
160 EET	DATE: 03, DRAW	BH	CHECK	 :: =80' (ED B DPB	
		3 c	י⊦ 4	+	

-0.10
-0.16
OPTION C
tion Change from
ting to Proposed
onditions (ft)

IGHT RO	JAD)		
10 YR	25 YR	50 YR	100 YR
365.3	444.9	546.2	779.6
173.1	238.1	287.9	357.5
53%	46%	47%	54%

10 YR	25 YR	50 YR	100 YR
518.5	643.3	798.7	1096.8
325.4	437.8	526.0	651.8
37%	32%	34%	41%

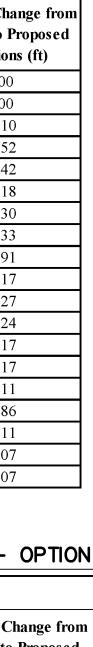

2-YEAR FLOODPLAIN WATER SURFACE ELEVATIONS - OPT

Cross-Section	Existing Conditions 2-Yr W.S.E. (ft)	Proposed Conditions 2-Yr W.S.E. (ft)	Elevation Existing Condi
2792.6	258.85	250.62	-
2739.1	258.85	249.93	-
2516.1	245.88	245.47	-
2397.5	244.38	242.01	-
2309.0	242.12	240.83	-
2283.0	240.51	239.87	-
2259.8	240.07	239.00	-
2225.1	240.25	239.07	-
2172.1	238.56	237.22	-
2110.1	237.66	234.79	-
2044.5	235.04	234.11	-
2025.5	234.79	233.92	_
1992.6	233.77	233.15	-
1592.6	228.25	227.62	_
1192.6	220.04	219.72	-
909.5	217.75	215.48	_
833.6	215.09	214.71	_
778.4	214.65	214.42	-
347.8	205.56	205.32	-

100-YEAR FLOODPLAIN WATER SURFACE ELEVATIONS - OP

Cross-Section	Existing Conditions 100-Yr W.S.E. (ft)	Proposed Conditions 100-Yr W.S.E. (ft)	Elevatio Existii Coi
2792.6	260.54	259.89	
2739.1	260.54	259.89	
2516.1	246.90	246.16	
2397.5	245.51	244.85	
2309.0	243.77	243.14	
2283.0	242.37	241.51	
2259.8	241.78	241.27	
2225.1	242.15	241.64	
2172.1	239.89	238.79	
2110.1	239.00	237.50	
2044.5	237.09	236.69	
2025.5	237.21	236.64	
1992.6	235.90	234.68	
1592.6	229.63	229.28	
1192.6	221.17	220.31	
909.5	221.02	220.08	
833.6	216.47	215.77	
778.4	215.48	215.06	
347.8	206.40	205.98	

	COPYRIGHT 2022 GILMORE & ASSOCIATES, INC. ENGINEERING & CONSULTING SERVICES CORPORTING & CONSULTING SERVICES CORPORTING READUARTERS CORPORTING THE PROFESSIONAL SEAL SHOULD BE CONSIDERED OFFICIAL AND RELIED UPON BY USER. THIS PLAN IS PREPARED SPECIFICALLY FOR THE CLIENT AND PROJECT DESIGNATED HEREON. MODIFICATION, REVISION, DUPLICATION OR USE WITHOUT THE CONSENT OF GILMORE & ASSOCIATES, INC. IS PROHIBITED.
TION D hange from Proposed ons (ft)	REV. DESCRIPTION DATE
$ \begin{array}{r} 23 \\ 92 \\ 41 \\ 37 \\ 29 \\ 54 \\ 07 \\ 18 \\ 34 \\ 87 \\ 93 \\ 87 \\ 93 \\ 87 \\ 93 \\ 87 \\ 93 \\ 87 \\ 93 \\ 87 \\ 93 \\ 87 \\ 62 \\ 63 \\ 32 \\ 27 \\ 38 \\ 23 \\ 24 \\ \hline TION D \\ \hline Change from to Proposed itions (ft) \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.65 \\ 0.66 \\ 0.63 \\ -0.66 \\ 0.63 \\ -0.86 \\ 0.51 \\ \hline \end{array} $	EXHIBIT LOWER GWYNEDD TOWNSHIP – HOUSTEN CREEK FLOODPLAIN STUDY LOWER GWYNEDD TOWNSHIP, MONTGOMERY COUNTY, PENNSYLVANIA OPTION D – OPTION A, B, & C COMBINED
$ \begin{array}{c} -0.51 \\ -0.51 \\ -1.10 \\ -1.50 \\ -0.40 \\ -0.57 \\ -1.22 \\ -0.35 \\ -0.86 \\ -0.94 \\ -0.70 \\ -0.42 \\ -0.42 \\ -0.42 \\ \end{array} $	GILMORE & ASSOCIATES, INC. ENGINEERING & CONSULTING SERVICES PROJECT No.: 2021–02081 OWNERS INFO: MUNICIPAL FILE No.:
) 160 FEET	TAX MAP PARCEL No.: TOTAL AREA: DATE: 03/17/23 DRAWN BY: BH CHECKED BY: DPB SHEET NO.: 4 OF 4


2-YEAR FLOODPLAIN WATER SURFACE ELEVATIONS - OPTION E

Cross-Section	Existing Conditions 2-Yr W.S.E. (ft)	Proposed Conditions 2-Yr W.S.E. (ft)	Elevation Cha Existing to Pr Conditions
2792.6	258.85	258.85	0.00
2739.1	258.85	258.85	0.00
2516.1	245.88	245.78	-0.10
2397.5	244.38	243.86	-0.52
2309.0	242.12	241.70	-0.42
2283.0	240.51	240.33	-0.18
2259.8	240.07	239.77	-0.30
2225.1	240.25	239.92	-0.33
2172.1	238.56	237.65	-0.91
2110.1	237.66	235.49	-2.17
2044.5	235.04	234.77	-0.27
2025.5	234.79	234.55	-0.24
1992.6	233.77	233.60	-0.17
1592.6	228.25	228.08	-0.17
1192.6	220.04	219.93	-0.11
909.5	217.75	216.89	-0.86
833.6	215.09	214.98	-0.11
778.4	214.65	214.58	-0.07
347.8	205.56	205.49	-0.07

100-YEAR FLOODPLAIN WATER SURFACE ELEVATIONS - OPTION E

Cross-Section	Existing Conditions 100-Yr W.S.E. (ft)	Proposed Conditions 100-Yr W.S.E. (ft)	Elevation Change from Existing to Proposed Conditions (ft)
2792.6	260.54	260.54	0.00
2739.1	260.54	260.54	0.00
2516.1	246.90	246.67	-0.23
2397.5	245.51	245.30	-0.21
2309.0	243.77	243.57	-0.20
2283.0	242.37	242.13	-0.24
2259.8	241.78	241.43	-0.35
2225.1	242.15	242.00	-0.15
2172.1	239.89	239.44	-0.45
2110.1	239.00	238.37	-0.63
2044.5	237.09	237.03	-0.06
2025.5	237.21	237.09	-0.12
1992.6	235.90	235.57	-0.33
1592.6	229.63	229.51	-0.12
1192.6	221.17	220.83	-0.34
909.5	221.02	220.75	-0.27
833.6	216.47	216.26	-0.21
778.4	215.48	215.35	-0.13
347.8	206.40	206.29	-0.11

G GILMORE & ASSOCIATES, INC. ENGINEERING & CONSULTING SERVICES	CORPORATE HEADQUARTERS 65 EAST BUTLER AVENUE, SUITE 100, NEW BRITAIN, PA 18901 • (215) 345-4330 • www.giimore-assoc.com	ONLY THOSE PLANS INCORPORATING THE PROFESSIONAL SEAL SHOULD BE CONSIDERED OFFICIAL AND RELIED UPON BY USER. THIS PLAN IS	PREPARED SPECIFICALLY FOR THE CLIENT AND PROJECT DESIGNATED HEREON. MODIFICATION, REVISION, DUPLICATION OR USE WITHOUT THE CONSENT OF CUMORE & ASSOCIATES INC IS BOQUIDITED	©COPYRIGHT 2022 GILMORE & ASSOCIATES, INC. 13 FROTIDITED.
				BΥ
				DATE
				DESCRIPTION
				REV.
EXHIBIT LOWER GWYNEDD TOWNSHIP -	0	LOWER GWYNEDD TOWNSHIP, MONTGOMERY COUNTY, PENNSYLVANIA	OPTION F - OPTION A & B COMBINED	
OWNERS IN	a a cons 10.: 2021—(IFO:	02081		
MUNICIPAL TAX MAP F TOTAL ARE DATE: 03/17/2 DRAWN BY BH SHEET N	 PARCE 23 : (IO.:	- L No.: FOTAL SCALE 1" CHECK	LOTS : =80' ED B' DPB	

2.4 LOCALIZED NEIGHBORHOOD FLOODING

In June 2022 the Township Engineer toured the neighborhood of Brookside Avenue, Francis Avenue, and Knight Road to talk with residents about the stormwater issues they have been experiencing to gain a deeper understanding of the drainage area. From those site meetings came the understanding that the stormwater issues are not solely related to flooding in the creek, but additional problems exist throughout the area primarily related to inadequate or undersized existing stormwater infrastructure.

In response to information from residents along Brookside Avenue and Francis Avenue confirming stormwater overtopping curbs in heavy rain events, the Township commissioned Sewer Specialty Services to conduct TV inspection and cleaning of the storm pipes within this area to evaluate the condition as well as determine if any blockages existed that could be contributing the experienced drainage issues. The results of the inspections were that the pipes are in good condition and no blockages were observed.

From site observations and desktop evaluation of the available LiDAR contours, it appears that stormwater is flowing down Francis Avenue from Knight Road where the general topography of the area suggested that historically the gutter flow had continued down Knight towards the Creek. In recent years there have been a few watermain breaks that resulted in the need to excavate and repave portions of the roads in this neighborhood. One of those such breaks was at the intersection of Knight Road and Francis Avenue. It is possible that when the intersection was repaved after the water main was repaired, the crown & gutter line were affected enough to direct stormwater down Francis rather than continuing along Knight as would have been the case historically. A recommendation of the study will be to gather detailed survey information of that intersection to determine if regrading can help alleviate some of the stormwater problems experienced by residents on Francis Avenue and the rear yards of residents on Brookside Avenue. An additional recommendation is to evaluate the potential for additional stormwater infrastructure (inlets, pipes, curbs) within the neighborhood to reduce the frequency and severity of road gutter and yard flooding.

3.0 **RECOMMENDATIONS**

The below list of recommendations is a summary of the items that were identified as improvements through the various analyses completed in the study. The "Priority Level" is intended to assist the Township is determining how to utilize funds as they become available. Engineer's Opinion of Probable Cost for improvements can be found in Appendix D.

- •Explore potential for replacement of private driveway bridge (serves 446 Marion) to increase flow capacity. This is a private driveway on private property. Installation of box culvert in place of the existing structure would significantly increase capacity at this location. (Priority Level 1)
- •Explore roadway drainage improvements (inlets, pipes, re-grading intersections, etc.) within areas of Knight, Francis, Brookside to alleviate street / yard flooding. Evaluate and potentially re-contour Knight/Francis Intersection. (Priority Level 1)
- •Explore partnership with Wissahickon School District for construction of new basin at corner of Houston & Knight Road and retrofit of existing basin near admin building. These improvements have rate / volume reduction and water quality potential making them eligible for many grants. (Priority Level 2)
- •Explore partnership with Wissahickon School District for expansion of existing dam or development of additional stormwater detention, volume reduction, or water quality BMPs elsewhere on WSD campus. (Priority Level 3)
- •Engage PennDOT regarding ongoing maintenance of Spring Garden Street culvert (Priority Level 3)

APPENDIX A – AERIAL MAP & FEMA FLOOD MAP

sources of small size. The **community map repository** should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary or Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1986 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations tables in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations tables should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Frogram. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control structures**. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

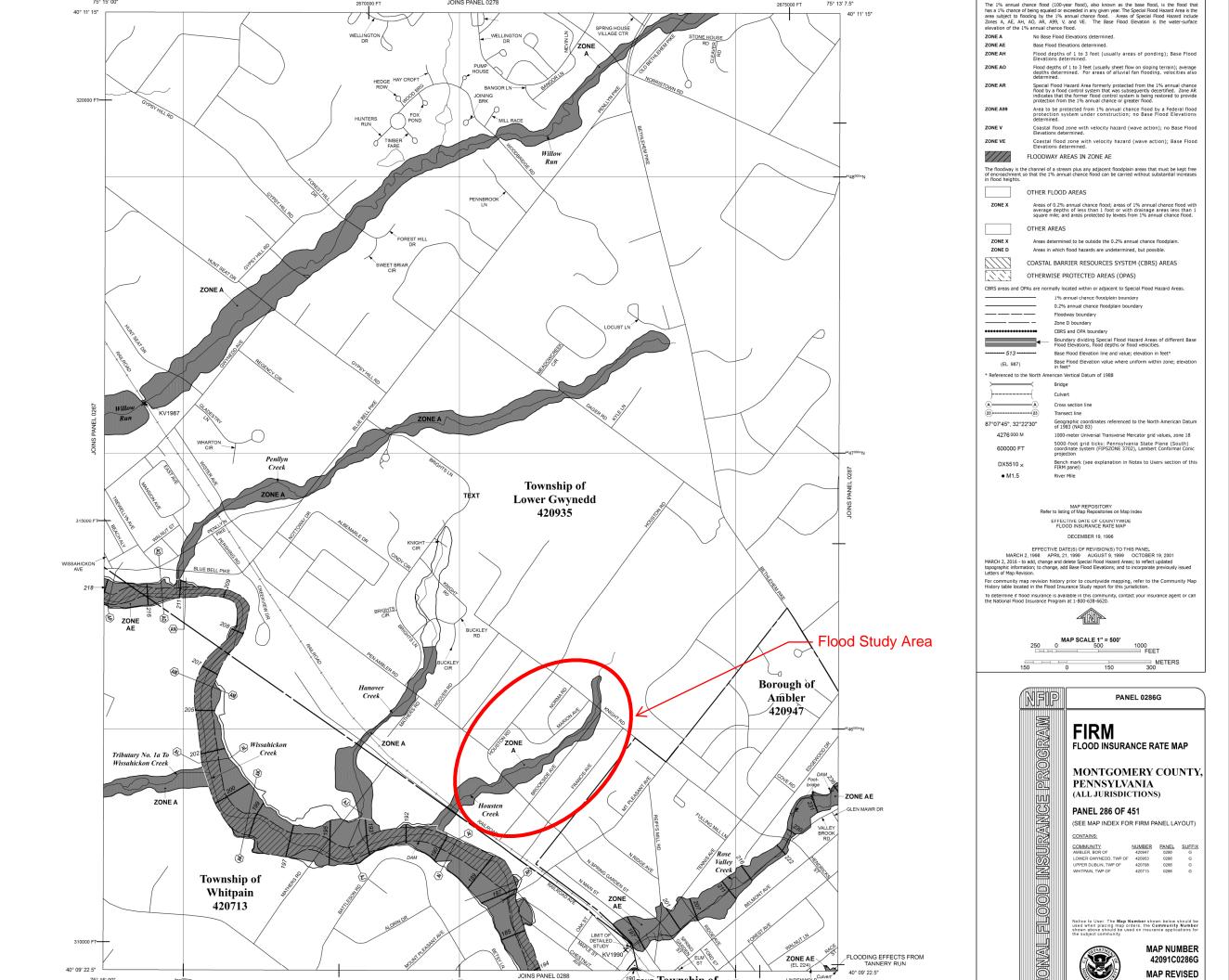
The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) Zone 18. Horizontal datum was NAD 83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same **vertical datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1986, visit the National Geodetic Survey website at <u>http://www.ngs.noaa.gov/</u> or contact the National Geodetic Survey at the following address:

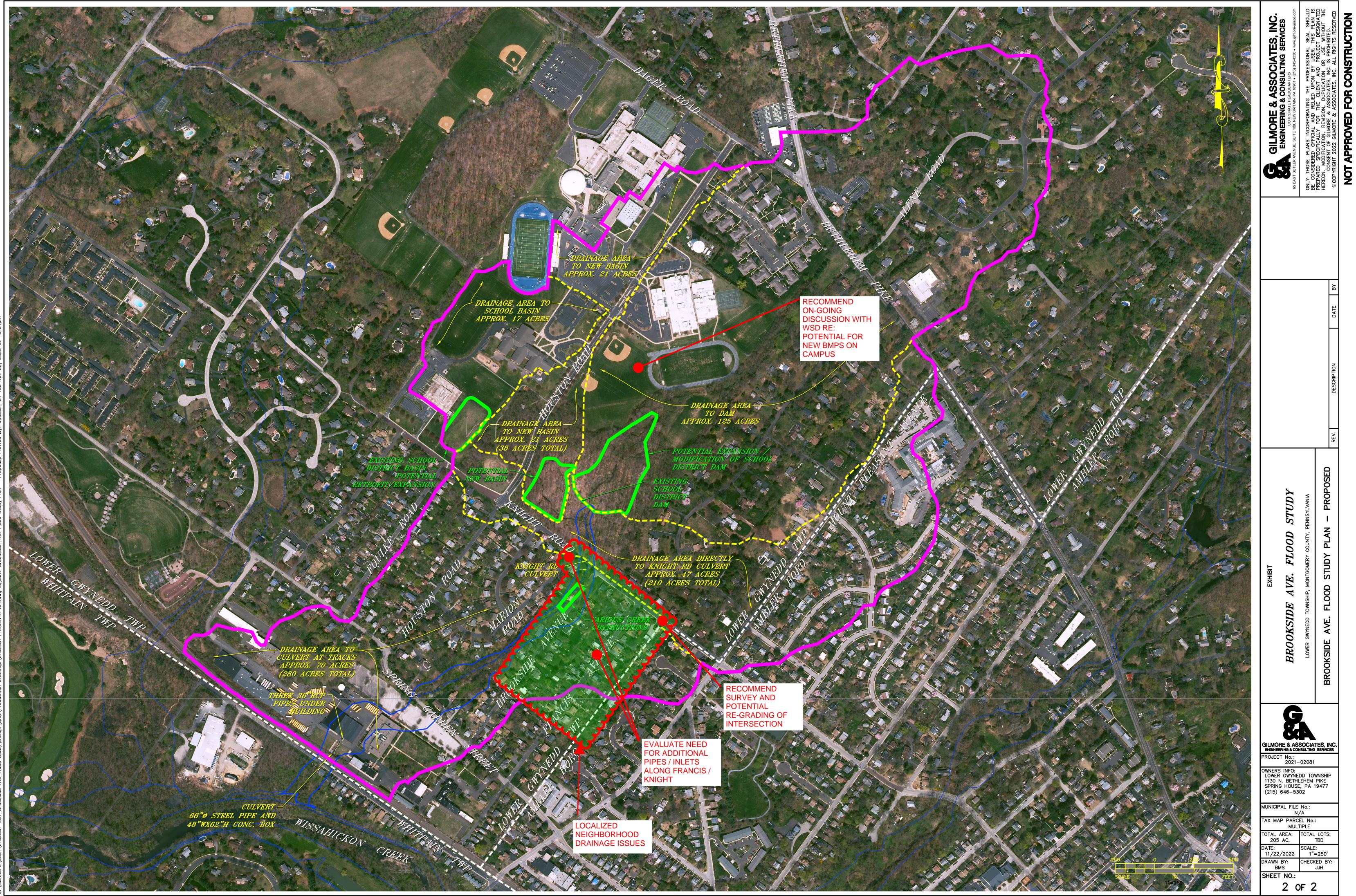
NGS Information Services National Geodetic Survey, NOAA Silver Spring Metro Center 3 1315 East-West Highway Silver Spring, Maryland 20910 (301) 713-3242

To obtain current elevation, description, and/or location information for **bench** marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (**301**) **713-3242**, or visit its website at <u>http://www.ngs.noaa.gov/</u>.

BASE MAP SOURCE: Road centerlines were obtained in digital spatial data format from the Delaware Valley Regional Planning Commission. County and township/borough boundaries were downloaded from the Pennsylvania Spatial Data Access website. 2002 and 2005 digital orthophotographs were provided by the Delaware Valley Regional Planning Commission. Streamlines were digitized based on the orthophotos. Adjustments were made to specific base map features to align them to 1"=200' scale orthophotos.

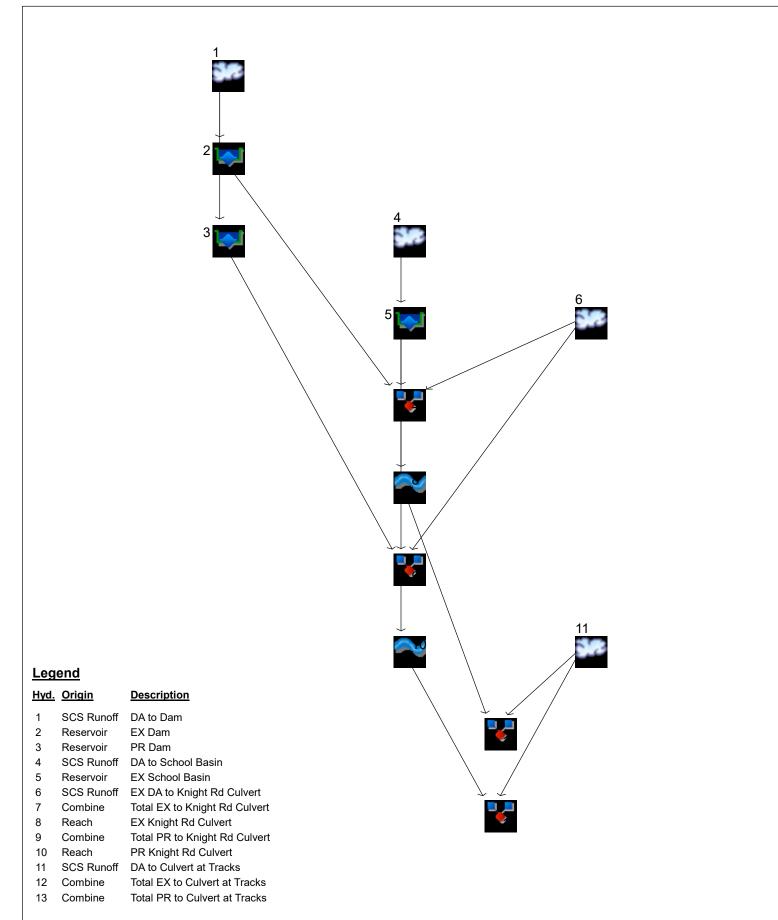

Based on updated topographic information, this map reflects more detailed and upto-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. As a result, the Flood Profiles and Floodway Data tables may reflect stream channel distances that differ from what is shown on the map. Also: the road to floodplain relationships for unrevised streams may differ from what is shown on previous maps.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this may was published, map users should contact appropriate community officials to verify current corporate limit locations.


Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

For information on available products associated with this FIRM visit the **Map** Service Center (MSC) website at <u>http://msc.fema.gov</u>. Available products may include proviously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the MSC website.

If you have **questions about this map**, how to order products or the National Flood Insurance Program in general, please call the **FEMA Map Information exchange (FMIX)** at 1-877-FEMA-MaP (1-877-336-2627) or visit the FEMA website at <u>http://www.fema.gov/business/nfip</u>.



APPENDIX B – PROPOSED IMPROVEMENT AERIAL MAP

APPENDIX C – RUNOFF CALCULATIONS & HYDROGRAPHS

Watershed Model Schematic

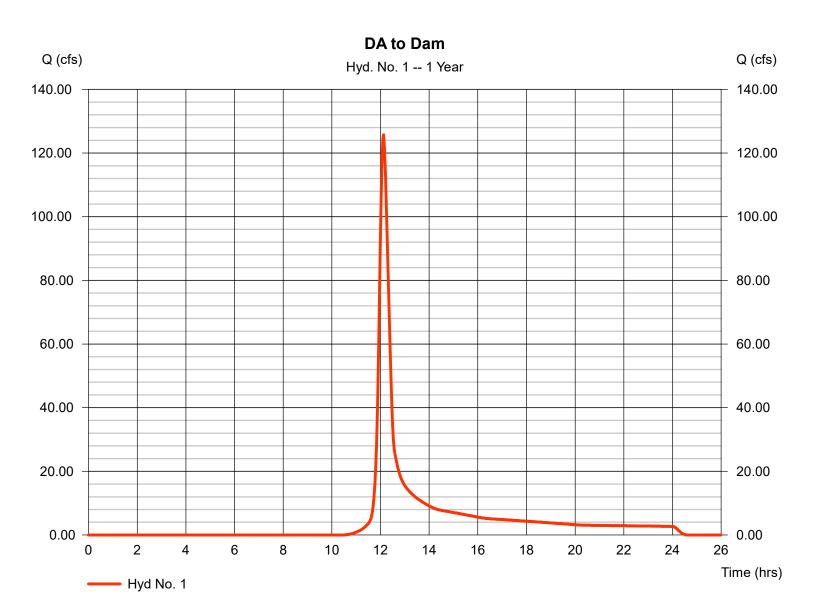
Hydrograph Return Period Recap

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No.	Hydrograph type	Inflow Hyd(s)		1		Peak Out	flow (cfs)				Hydrograph description
	(origin)		1-Yr	2-Yr	3-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	
1	SCS Runoff		125.75	180.90		269.70	348.18	462.79	561.52	668.28	DA to Dam
2	Reservoir	1	101.31	122.45		143.57	155.32	188.75	303.95	452.95	EX Dam
3	Reservoir	1	18.03	28.27		43.57	62.56	85.01	143.09	173.73	PR Dam
4	SCS Runoff		16.46	23.17		33.84	43.17	56.70	68.29	80.79	DA to School Basin
5	Reservoir	4	8.431	11.97		18.44	24.40	33.06	46.22	62.91	EX School Basin
6	SCS Runoff		82.53	114.92		165.88	210.08	273.90	328.43	387.07	EX DA to Knight Rd Culvert
7	Combine	2, 5, 6	182.16	234.98		308.22	365.25	444.90	546.15	779.64	Total EX to Knight Rd Culvert
8	Reach	7	185.01	238.11		311.00	368.57	445.40	556.53	803.93	EX Knight Rd Culvert
9	Combine	3, 5, 6,	92.47	134.25		201.22	254.17	344.24	415.63	504.36	Total PR to Knight Rd Culvert
10	Reach	9	92.80	135.04		201.72	254.20	344.56	416.20	509.12	PR Knight Rd Culvert
11	SCS Runoff		64.98	89.60		128.23	161.67	209.86	250.96	295.14	DA to Culvert at Tracks
12	Combine	8, 11	244.99	321.68		431.54	518.45	643.34	798.74	1096.75	Total EX to Culvert at Tracks
13	Combine	10, 11,	153.62	219.02		322.26	406.73	542.85	653.57	799.96	Total PR to Culvert at Tracks

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.22


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	125.75	2	728	451,492				DA to Dam
2	Reservoir	101.31	2	734	451,435	1	252.64	25,632	EX Dam
3	Reservoir	18.03	2	770	421,572	1	253.04	199,938	PR Dam
4	SCS Runoff	16.46	2	732	67,620				DA to School Basin
5	Reservoir	8.431	2	750	67,612	4	272.07	20,387	EX School Basin
6	SCS Runoff	82.53	2	728	290,476				EX DA to Knight Rd Culvert
7	Combine	182.16	2	728	809,523	2, 5, 6			Total EX to Knight Rd Culvert
8	Reach	185.01	2	730	809,488	7			EX Knight Rd Culvert
9	Combine	92.47	2	728	779,659	3, 5, 6,			Total PR to Knight Rd Culvert
10	Reach	92.80	2	730	779,530	9			PR Knight Rd Culvert
11	SCS Runoff	64.98	2	736	299,359				DA to Culvert at Tracks
12	Combine	244.99	2	730	1,108,848	8, 11			Total EX to Culvert at Tracks
13	Combine	153.62	2	732	1,078,890	10, 11,			Total PR to Culvert at Tracks
Bro	okside Ave Fl	ood Stud	ly - Dam	gpw	Return P	eriod: 1 Ye	ar	Monday, Ma	ar 13, 2023

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 1

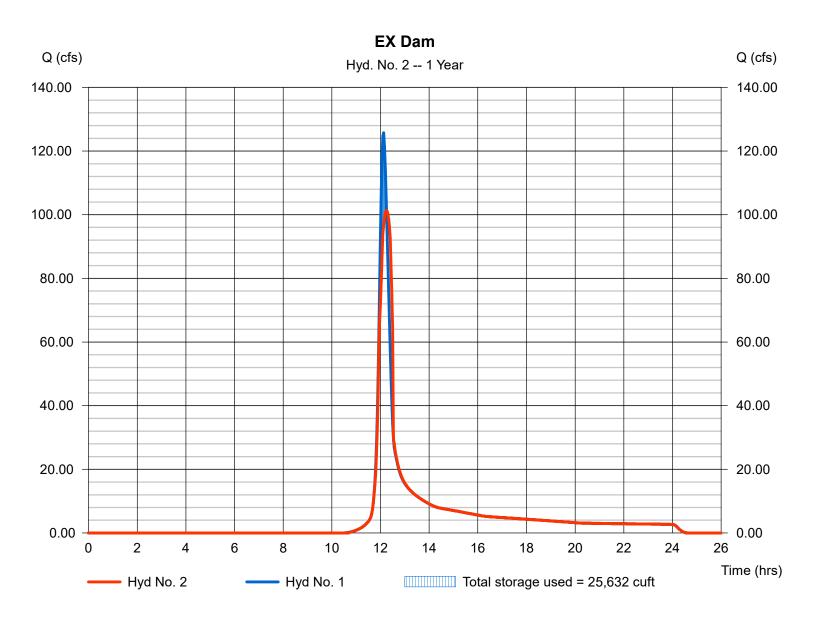
DA to Dam

Hydrograph type	= SCS Runoff	Peak discharge	= 125.75 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 451,492 cuft
Drainage area	= 125.440 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.90 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 1

DA to Dam

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 160.0 = 3.25 = 5.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 9.81	+	0.00	+	0.00	=	9.81
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 150.00 = 4.70 = Unpaved = 3.50		675.00 3.30 Paved 3.69		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.71	+	3.05	+	0.00	=	3.76
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 3.14 = 6.28 = 2.00 = 0.015 = 8.83 = 650.0		30.00 22.60 2.00 0.050 5.10 2470.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 1.23	+	8.08	+	0.00	=	9.31
Total Travel Time, Tc							22.90 min


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 2

EX Dam

Hydrograph type	= Reservoir	Peak discharge	= 101.31 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 451,435 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 252.64 ft
Reservoir name	= EX Dam	Max. Storage	= 25,632 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs by Intelisolve v9.22

Pond No. 1 - EX Dam

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 246.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	246.00	01	0	0
2.00	248.00	143	144	144
4.00	250.00	2,390	2,533	2,677
6.00	252.00	10,496	12,886	15,563
8.00	254.00	21,604	32,100	47,663
10.00	256.00	32,612	54,216	101,879
12.00	258.00	60,893	93,505	195,384
14.00	260.00	104,424	165,317	360,701
16.00	262.00	155,295	259,719	620,420

Culvert / Orifice Structures

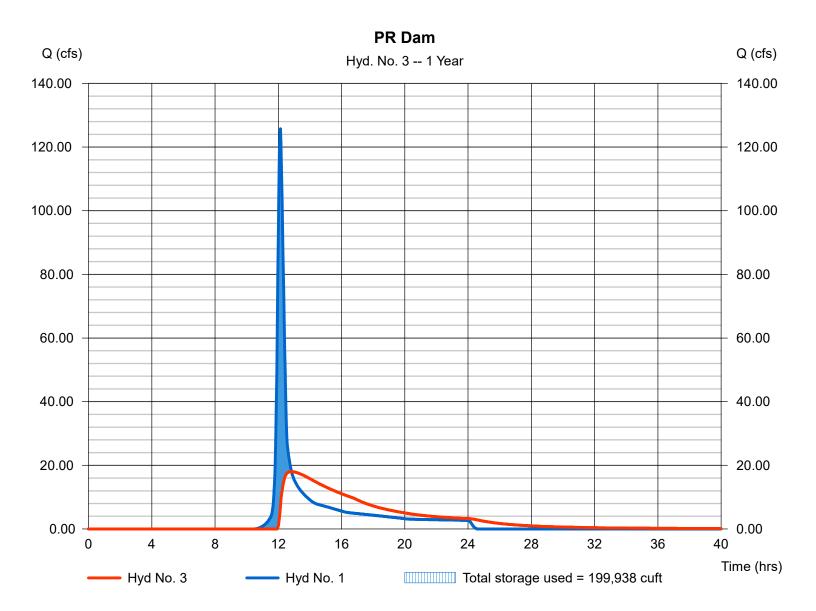
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 30.00	0.00	0.00	0.00	Crest Len (ft)	= 72.00	175.00	0.00	0.00
Span (in)	= 48.00	0.00	0.00	0.00	Crest El. (ft)	= 260.00	261.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 2.60	2.60	3.33	3.33
Invert El. (ft)	= 246.95	0.00	0.00	0.00	Weir Type	= Broad	Broad		
Length (ft)	= 9.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 5.20	0.00	0.00	n/a	-				
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

Stage /	Storage / I	Discharge [·]	Table	nice outliows a	e ana
Stage	Storage	Elevation	Clv A	Clv B	C

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	246.00	0.00				0.00	0.00					0.000
2.00	144	248.00	14.65 ic				0.00	0.00					14.65
4.00	2,677	250.00	64.60 ic				0.00	0.00					64.60
6.00	15,563	252.00	93.86 ic				0.00	0.00					93.86
8.00	47,663	254.00	115.96 ic				0.00	0.00					115.96
10.00	101,879	256.00	134.48 ic				0.00	0.00					134.48
12.00	195,384	258.00	150.73 ic				0.00	0.00					150.73
14.00	360,701	260.00	165.40 ic				0.00	0.00					165.40
16.00	620,420	262.00	178.87 ic				529.48	455.00					1163.35


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 3

PR Dam

Hydrograph type	= Reservoir	Peak discharge	= 18.03 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.83 hrs
Time interval	= 2 min	Hyd. volume	= 421,572 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 253.04 ft
Reservoir name	= PR Dam - OCS and Grading	Max. Storage	= 199,938 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs by Intelisolve v9.22

Pond No. 2 - PR Dam - OCS and Grading

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 246.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	246.00	01	0	0
2.00	248.00	259	260	260
4.00	250.00	29,372	29,631	29,891
6.00	252.00	61,915	91,287	121,178
8.00	254.00	89,847	151,762	272,940
10.00	256.00	119,368	209,215	482,155
12.00	258.00	143,508	262,876	745,031
14.00	260.00	161,138	304,647	1,049,677
16.00	262.00	176,750	337,888	1,387,565

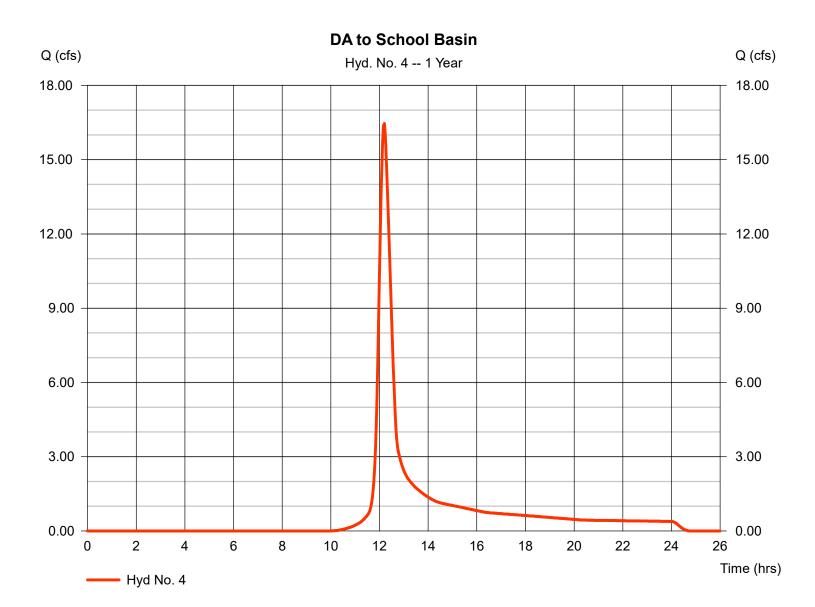
Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 30.00	48.00	12.00	0.00	Crest Len (ft)	= 24.00	72.00	175.00	0.00
Span (in)	= 48.00	12.00	48.00	0.00	Crest El. (ft)	= 258.00	260.00	261.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	2.60	2.60	3.33
Invert El. (ft)	= 246.95	250.00	255.00	0.00	Weir Type	= Rect	Broad	Broad	
Length (ft)	= 9.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 5.20	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

Stage / Storage / Discharge Table


-	-											
Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0	246.00	0.00	0.00	0.00		0.00	0.00	0.00				0.000
260	248.00	0.00	0.00	0.00		0.00	0.00	0.00				0.000
29,891	250.00	0.00	0.00	0.00		0.00	0.00	0.00				0.000
121,178	252.00	9.63 ic	9.63 ic	0.00		0.00	0.00	0.00				9.630
272,940	254.00	27.24 ic	27.24 ic	0.00		0.00	0.00	0.00				27.24
482,155	256.00	52.14 oc	38.52 ic	13.62 ic		0.00	0.00	0.00				52.14
745,031	258.00	77.63 ic	47.18 ic	30.45 ic		0.00	0.00	0.00				77.63
1,049,677	260.00	162.62 ic	12.08 ic	12.08 ic		138.46 s	0.00	0.00				162.62
1,387,565	262.00	178.33 ic	5.53 ic	5.53 ic		167.22 s	529.48	455.00				1162.76
	cuft 0 29,891 121,178 272,940 482,155 745,031 1,049,677	cuft ft 0 246.00 260 248.00 29,891 250.00 121,178 252.00 272,940 254.00 482,155 256.00 745,031 258.00 1,049,677 260.00	cuft ft cfs 0 246.00 0.00 260 248.00 0.00 29,891 250.00 0.00 121,178 252.00 9.63 ic 272,940 254.00 27.24 ic 482,155 256.00 52.14 oc 745,031 258.00 77.63 ic 1,049,677 260.00 162.62 ic	cuftftcfscfs0246.000.000.00260248.000.000.0029,891250.000.000.00121,178252.009.63 ic9.63 ic272,940254.0027.24 ic27.24 ic482,155256.0052.14 oc38.52 ic745,031258.0077.63 ic47.18 ic1,049,677260.00162.62 ic12.08 ic	cuft ft cfs cfs cfs 0 246.00 0.00 0.00 0.00 260 248.00 0.00 0.00 0.00 29,891 250.00 0.00 0.00 0.00 121,178 252.00 9.63 ic 9.63 ic 0.00 272,940 254.00 27.24 ic 27.24 ic 0.00 482,155 256.00 52.14 oc 38.52 ic 13.62 ic 745,031 258.00 77.63 ic 47.18 ic 30.45 ic 1,049,677 260.00 162.62 ic 12.08 ic 12.08 ic	cuft ft cfs cfs cfs cfs 0 246.00 0.00 0.00 0.00 260 248.00 0.00 0.00 0.00 29,891 250.00 0.00 0.00 121,178 252.00 9.63 ic 9.63 ic 0.00 272,940 254.00 27.24 ic 27.24 ic 0.00 482,155 256.00 52.14 oc 38.52 ic 13.62 ic 745,031 258.00 77.63 ic 47.18 ic 30.45 ic 1,049,677 260.00 162.62 ic 12.08 ic 12.08 ic	cuft ft cfs cfs <td>cuft ft cfs cfs<td>cuft ft cfs cfs<td>cuft ft cfs cfs<td>cuft ft cfs cfs<td>cuft ft cfs cfs</td></td></td></td></td>	cuft ft cfs cfs <td>cuft ft cfs cfs<td>cuft ft cfs cfs<td>cuft ft cfs cfs<td>cuft ft cfs cfs</td></td></td></td>	cuft ft cfs cfs <td>cuft ft cfs cfs<td>cuft ft cfs cfs<td>cuft ft cfs cfs</td></td></td>	cuft ft cfs cfs <td>cuft ft cfs cfs<td>cuft ft cfs cfs</td></td>	cuft ft cfs cfs <td>cuft ft cfs cfs</td>	cuft ft cfs cfs

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 4

DA to School Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 16.46 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.20 hrs
Time interval	= 2 min	Hyd. volume	= 67,620 cuft
Drainage area	= 17.130 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.50 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 4

DA to School Basin

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 3.25 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 23.41	+	0.00	+	0.00	=	23.41
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 265.00 = 2.30 = Unpavec = 2.45	ł	60.00 16.70 Unpave 6.59	d	160.00 1.90 Paved 2.80		
Travel Time (min)	= 1.80	+	0.15	+	0.95	=	2.91
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 0.20 = 1.57 = 1.00 = 0.015 = 2.50 = 285.0		1.23 3.93 2.00 0.015 6.45 115.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 1.90	+	0.30	+	0.00	=	2.20
Total Travel Time, Tc						28.50 min	

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 5

EX School Basin

Hydrograph type	= Reservoir	Peak discharge	= 8.431 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.50 hrs
Time interval	= 2 min	Hyd. volume	= 67,612 cuft
Inflow hyd. No.	= 4 - DA to School Basin	Max. Elevation	= 272.07 ft
Reservoir name	= EX School Basin	Max. Storage	= 20,387 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs by Intelisolve v9.22

Pond No. 3 - EX School Basin

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 270.00 ft

Stage / Storage Table

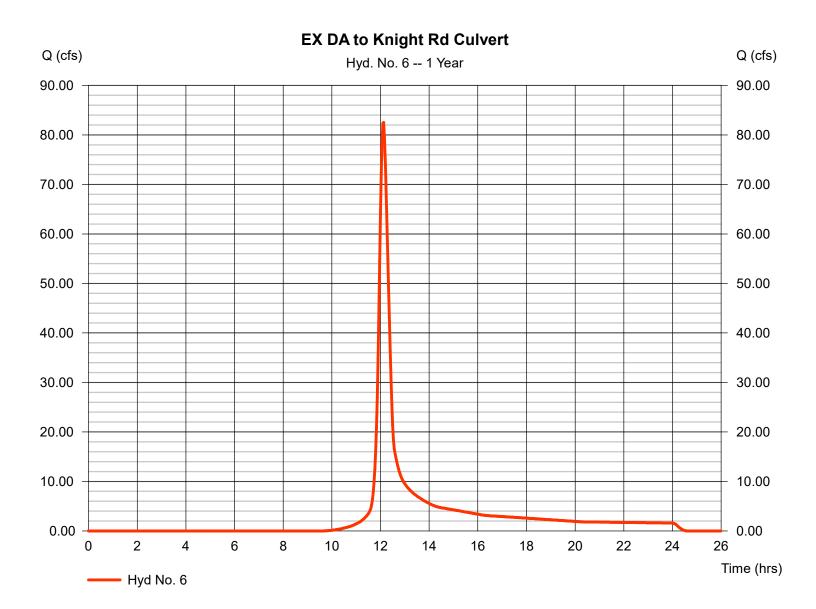
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	270.00	441	0	0
2.00	272.00	18,356	18,797	18,797
4.00	274.00	28,936	47,292	66,089
5.00	275.00	37,052	32,994	99,083

Weir Structures

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 36.00	6.00	24.00	0.00	Crest Len (ft)	= 16.00	25.00	0.00	0.00
Span (in)	= 36.00	6.00	26.00	0.00	Crest El. (ft)	= 273.75	274.00	0.00	0.00
No. Barrels	= 1	4	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 270.00	270.00	271.33	0.00	Weir Type	= Rect	Ciplti		
Length (ft)	= 330.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.50	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table


Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	270.00	0.00	0.00	0.00		0.00	0.00					0.000
2.00	18,797	272.00	7.75 ic	3.70 ic	4.05 ic		0.00	0.00					7.748
4.00	66,089	274.00	35.83 ic	4.48 ic	24.69 ic		6.66	0.00					35.83
5.00	99,083	275.00	53.53 oc	1.70 ic	9.38 ic		42.45 s	83.25					136.77

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 6

EX DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 82.53 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 290,476 cuft
Drainage area	= 68.530 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 6

EX DA to Knight Rd Culvert

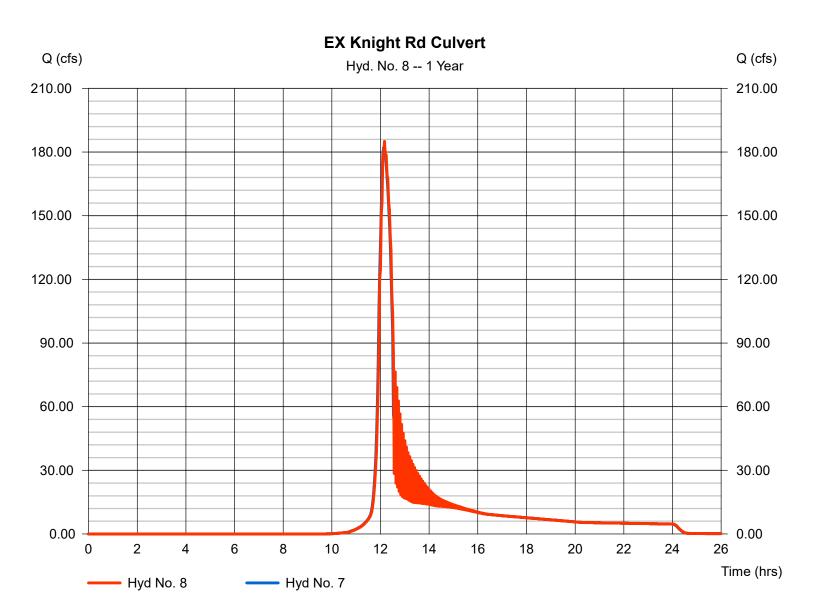
Description	<u>A</u>		<u>B</u>		<u>c</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 255.0 = 3.25 = 2.70		0.011 0.0 3.25 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 18.23	+	0.00	+	0.00	=	18.23
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 30.00 = 1.50 = Paved = 2.49		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.20	+	0.00	+	0.00	=	0.20
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 1.77 = 4.71 = 1.70 = 0.015 = 6.72 = 600.0		3.14 6.28 1.50 0.015 7.65 875.0		7.07 9.42 1.90 0.015 11.30 1025.0		
Travel Time (min)	= 1.49	+	1.91	+	1.51	=	4.91
Total Travel Time, Tc							

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 7

Total EX to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge	= 182.16 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 809,523 cuft
Inflow hyds.	= 2, 5, 6	Contrib. drain. area	ı = 68.530 ac

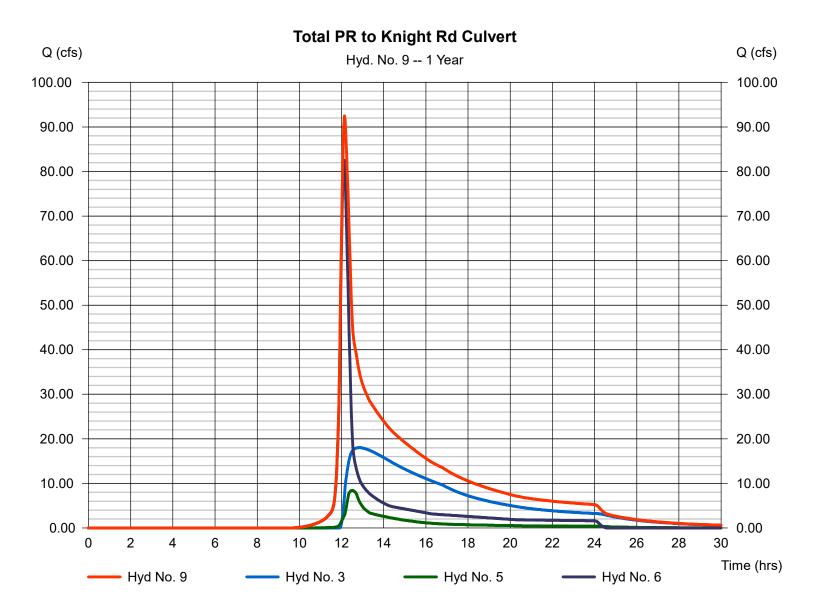

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 8

EX Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 185.01 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 809,488 cuft
Inflow hyd. No.	= 7 - Total EX to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 22.02 ft/s	Routing coeff.	= 1.9479

Modified Att-Kin routing method used.

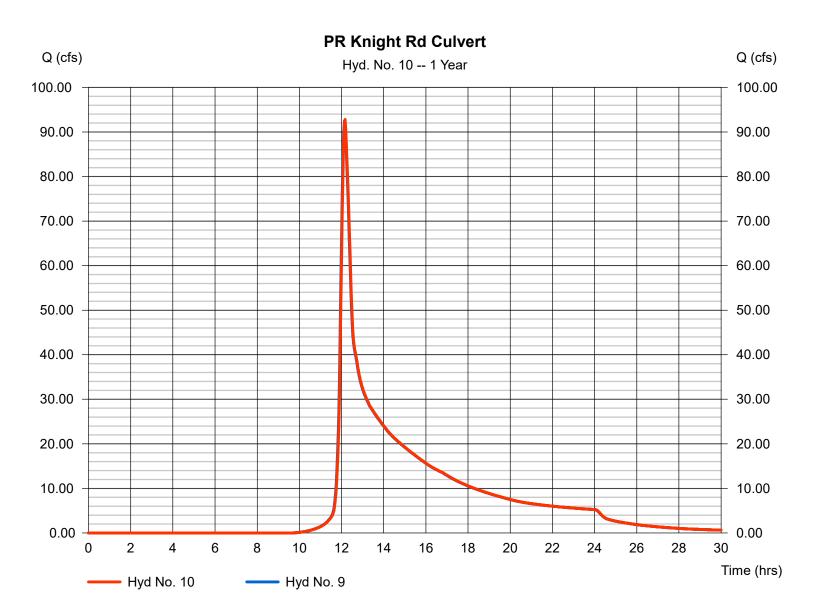


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 9

Total PR to Knight Rd Culvert

Hydrograph type =	Combine	Peak discharge	= 92.47 cfs
Storm frequency =	1 yrs	Time to peak	= 12.13 hrs
Time interval =	2 min	Hyd. volume	= 779,659 cuft
Inflow hyds. =	3, 5, 6	Contrib. drain. area	= 68.530 ac

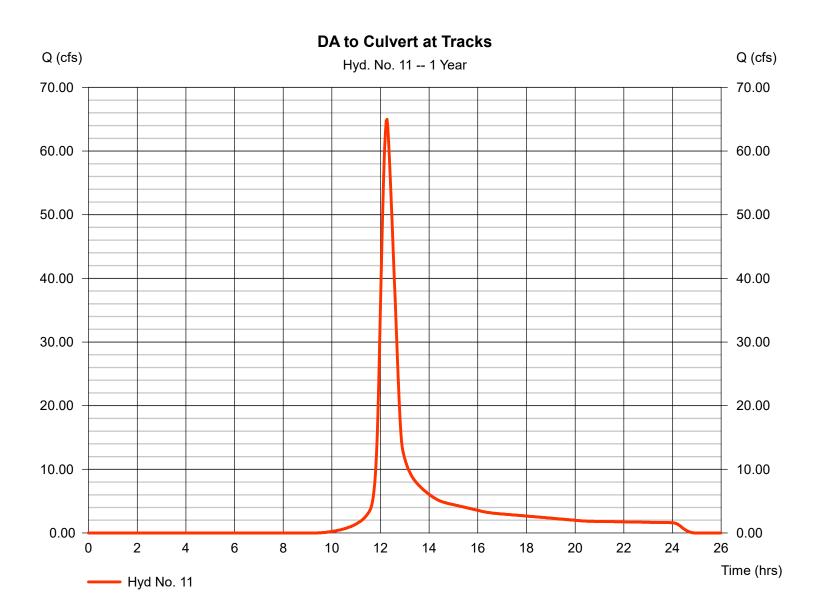

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 10

PR Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 92.80 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 779,530 cuft
Inflow hyd. No.	= 9 - Total PR to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 17.28 ft/s	Routing coeff.	= 1.9341

Modified Att-Kin routing method used.



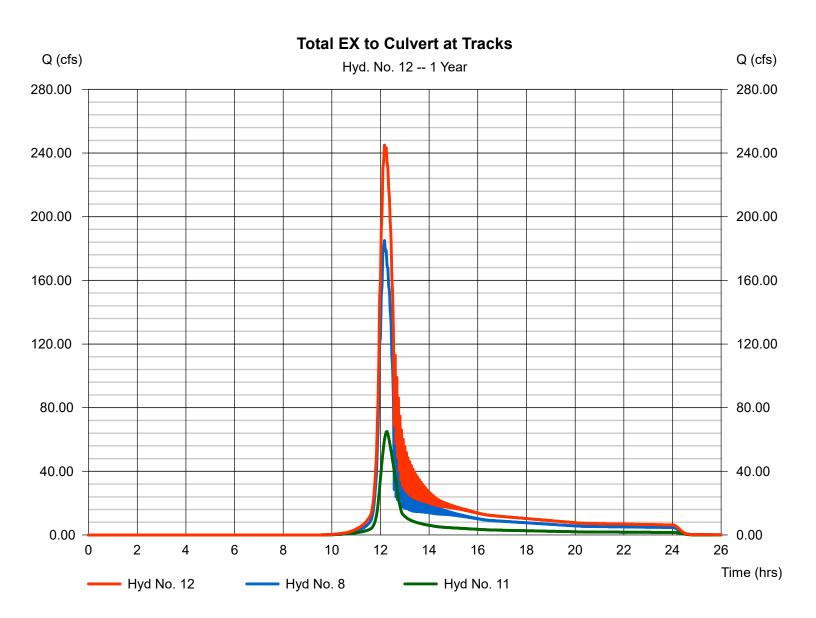
Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 11

DA to Culvert at Tracks

Hydrograph type	= SCS Runoff	Peak discharge	= 64.98 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 299,359 cuft
Drainage area	= 68.990 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.30 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

DA to Culvert at Tracks

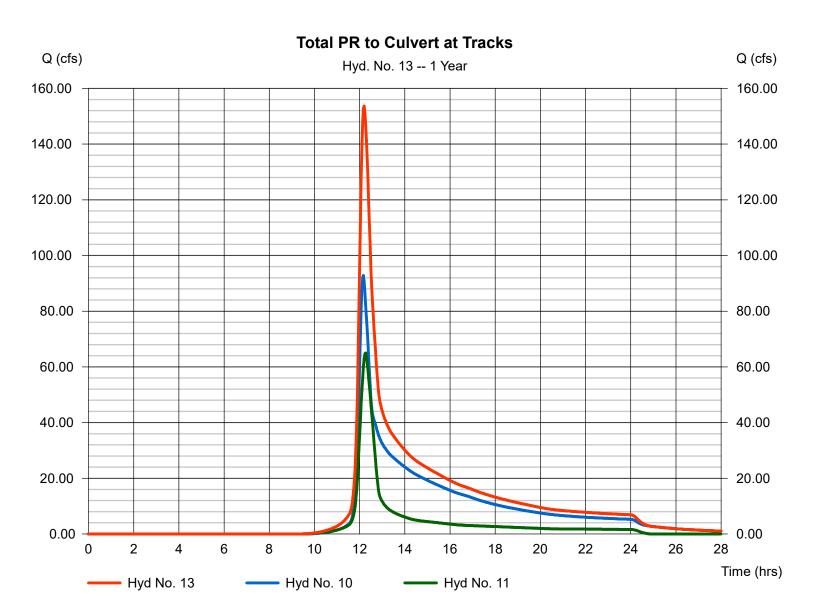

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 3.25 = 1.70		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 24.99	+	0.00	+	0.00	=	24.99
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 740.00 = 1.00 = Unpaved = 1.61	ł	560.00 6.60 Paved 5.22		0.00 0.00 Paved 0.00		
Travel Time (min)	= 7.64	+	1.79	+	0.00	=	9.43
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 3.14 = 6.28 = 3.30 = 0.015 = 11.34 = 60.0		21.21 28.27 2.80 0.015 13.71 650.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 0.09	+	0.79	+	0.00	=	0.88
Total Travel Time, Tc					35.30 min		

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 12

Total EX to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 244.99 cfs
Storm frequency	= 1 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = 1,108,848 cuft
Inflow hyds.	= 8, 11	Contrib. drain. area = 68.990 ac



Hydraflow Hydrographs by Intelisolve v9.22

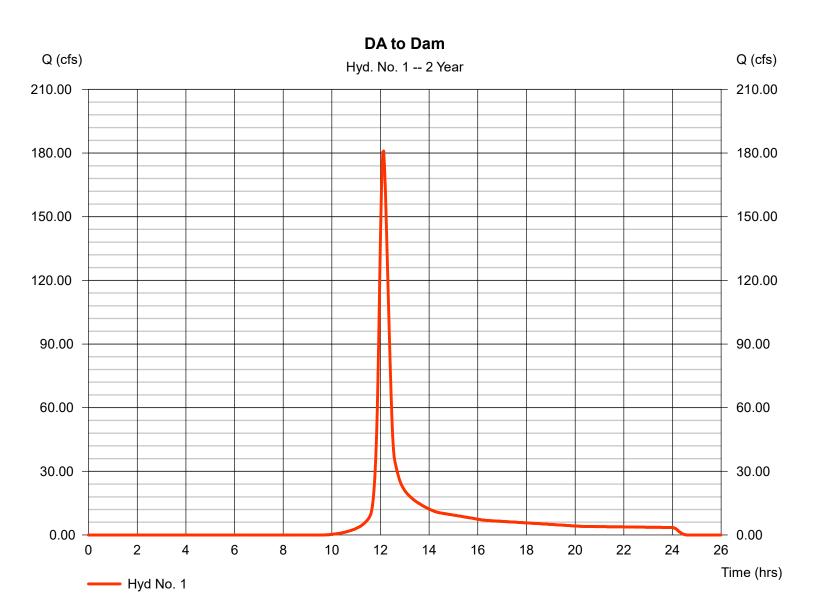
Hyd. No. 13

Total PR to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 153.62 cfs
Storm frequency	= 1 yrs	Time to peak = 12.20 hrs
Time interval	= 2 min	Hyd. volume = 1,078,890 cuft
Inflow hyds.	= 10, 11	Contrib. drain. area = 68.990 ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.22

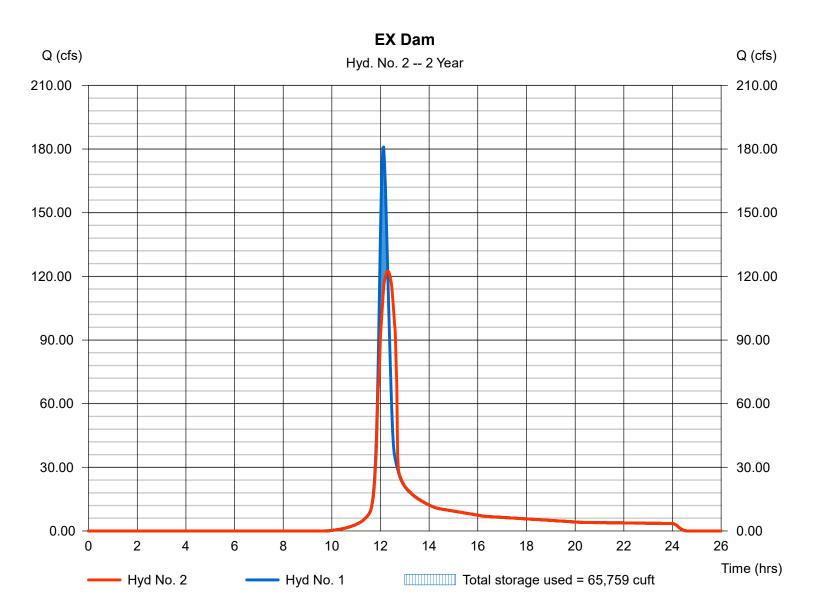

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	180.90	2	728	636,994				DA to Dam
2	Reservoir	122.45	2	738	636,936	1	254.67	65,759	EX Dam
3	Reservoir	28.27	2	764	607,073	1	254.16	289,158	PR Dam
4	SCS Runoff	23.17	2	732	93,799				DA to School Basin
5	Reservoir	11.97	2	750	93,791	4	272.39	28,057	EX School Basin
6	SCS Runoff	114.92	2	726	399,659				EX DA to Knight Rd Culvert
7	Combine	234.98	2	730	1,130,385	2, 5, 6			Total EX to Knight Rd Culvert
8	Reach	238.11	2	730	1,130,352	7			EX Knight Rd Culvert
9	Combine	134.25	2	728	1,100,521	3, 5, 6,			Total PR to Knight Rd Culvert
10	Reach	135.04	2	730	1,100,394	9			PR Knight Rd Culvert
11	SCS Runoff	89.60	2	736	408,597				DA to Culvert at Tracks
12	Combine	321.68	2	730	1,538,951	8, 11			Total EX to Culvert at Tracks
13	Combine	219.02	2	732	1,508,991	10, 11,			Total PR to Culvert at Tracks
Bro	okside Ave F	lood Stud	ly - Dam	.gpw	Return P	eriod: 2 Ye	ar	Monday, Ma	ar 13, 2023

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 1

DA to Dam

Hydrograph type	= SCS Runoff	Peak discharge	= 180.90 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 636,994 cuft
Drainage area	= 125.440 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.90 min
Total precip.	= 3.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

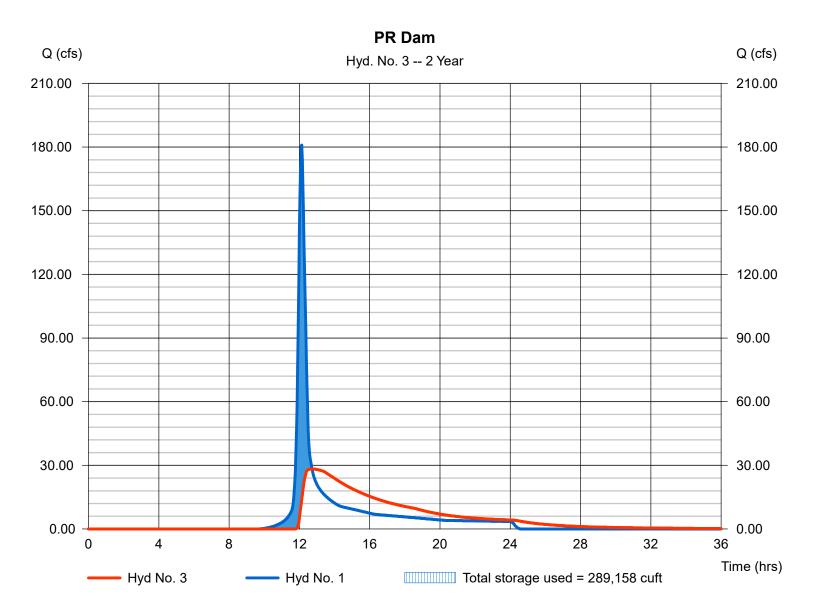

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 2

EX Dam

Hydrograph type	= Reservoir	Peak discharge	= 122.45 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 636,936 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 254.67 ft
Reservoir name	= EX Dam	Max. Storage	= 65,759 cuft

Storage Indication method used.

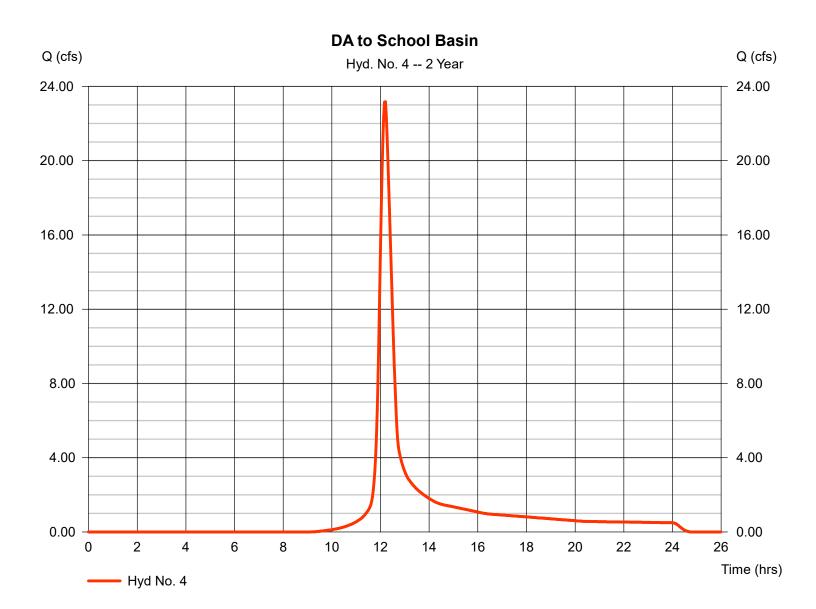

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 3

PR Dam

Hydrograph type	= Reservoir	Peak discharge	= 28.27 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.73 hrs
Time interval	= 2 min	Hyd. volume	= 607,073 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 254.16 ft
Reservoir name	= PR Dam - OCS and Grading	Max. Storage	= 289,158 cuft

Storage Indication method used.

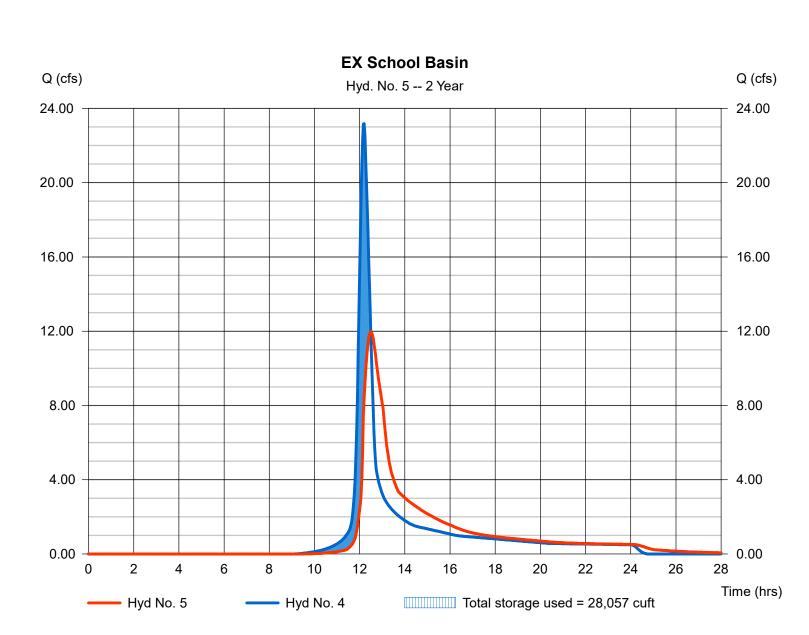


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 4

DA to School Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 23.17 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.20 hrs
Time interval	= 2 min	Hyd. volume	= 93,799 cuft
Drainage area	= 17.130 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.50 min
Total precip.	= 3.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

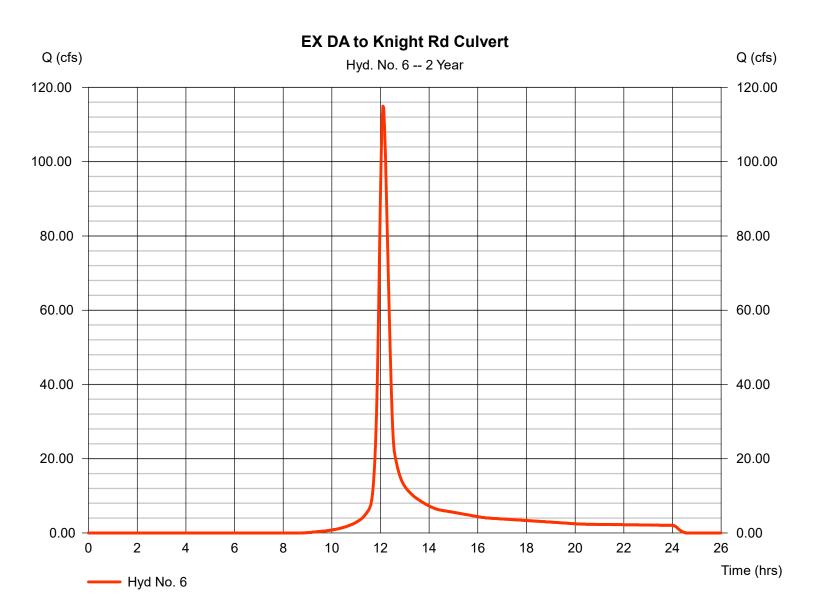

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 5

EX School Basin

Hydrograph type	= Reservoir	Peak discharge	= 11.97 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.50 hrs
Time interval	= 2 min	Hyd. volume	= 93,791 cuft
Inflow hyd. No.	= 4 - DA to School Basin	Max. Elevation	= 272.39 ft
Reservoir name	= EX School Basin	Max. Storage	= 28,057 cuft

Storage Indication method used.

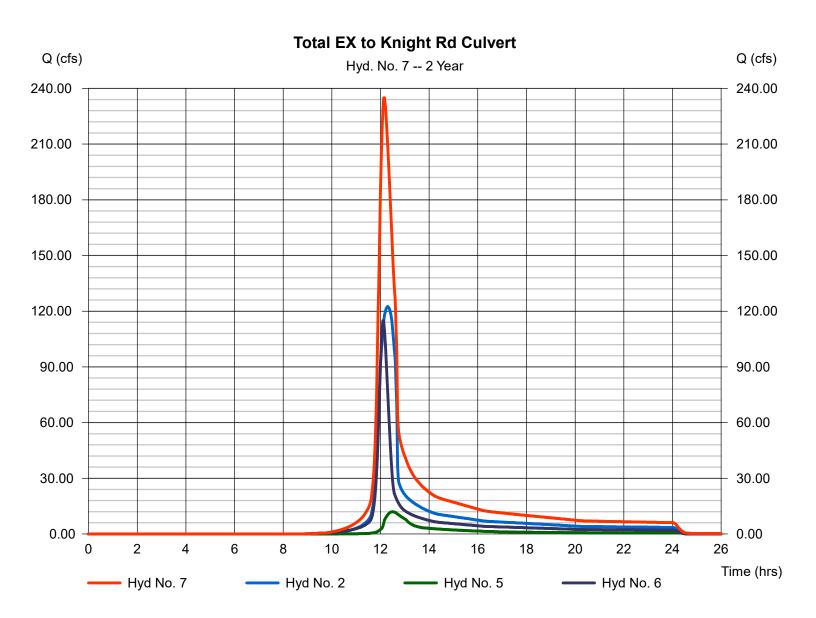


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 6

EX DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 114.92 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 399,659 cuft
Drainage area	= 68.530 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 3.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

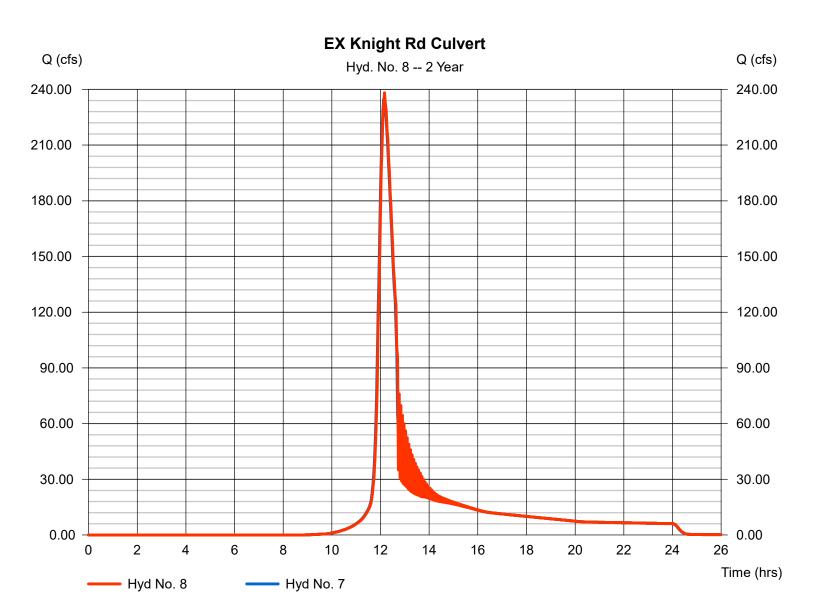


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 7

Total EX to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 234.98 cfs
Storm frequency	= 2 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = 1,130,385 cuft
Inflow hyds.	= 2, 5, 6	Contrib. drain. area = 68.530 ac

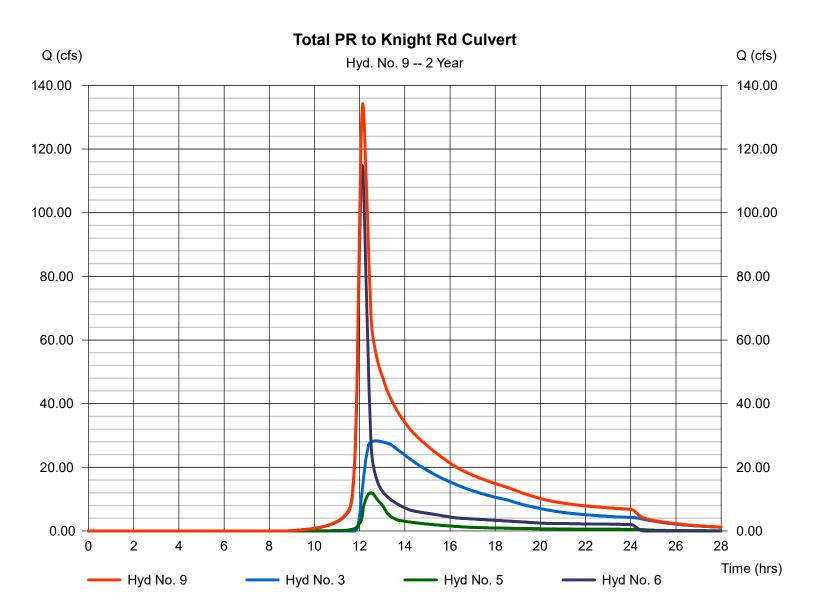

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 8

EX Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 238.11 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 1,130,352 cuft
Inflow hyd. No.	= 7 - Total EX to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 24.11 ft/s	Routing coeff.	= 1.9523

Modified Att-Kin routing method used.

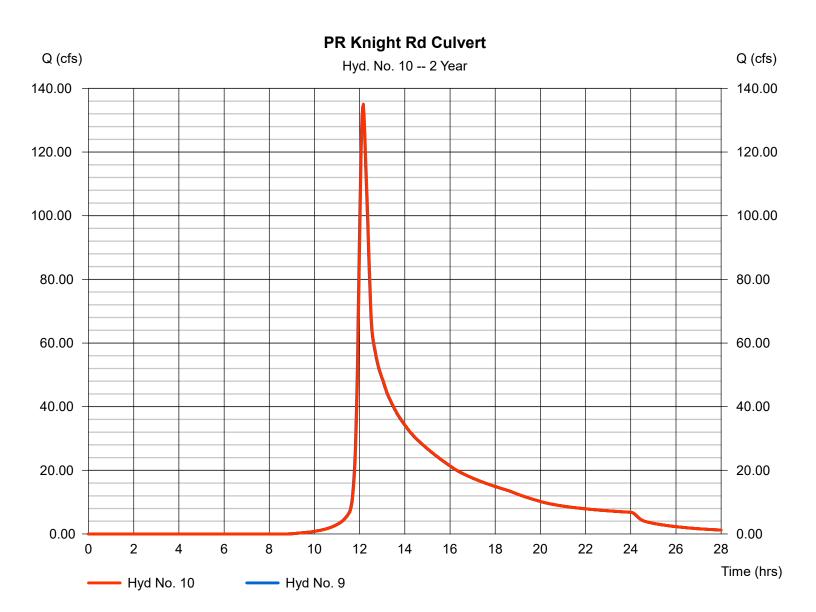


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 9

Total PR to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 134.25 cfs
Storm frequency	= 2 yrs	Time to peak = 12.13 hrs
Time interval	= 2 min	Hyd. volume = 1,100,521 cuft
Inflow hyds.	= 3, 5, 6	Contrib. drain. area = 68.530 ac

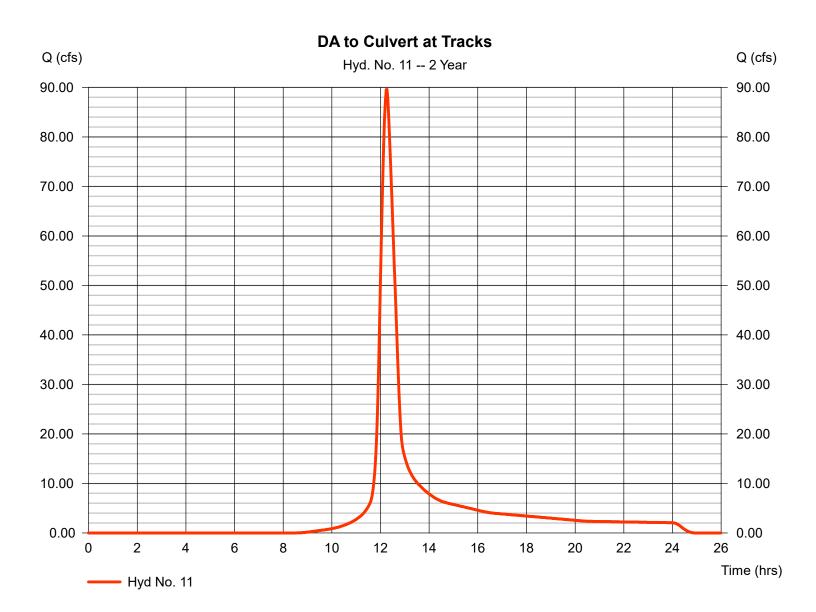

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 10

PR Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 135.04 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 1,100,394 cuft
Inflow hyd. No.	= 9 - Total PR to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 19.74 ft/s	Routing coeff.	= 1.9420

Modified Att-Kin routing method used.

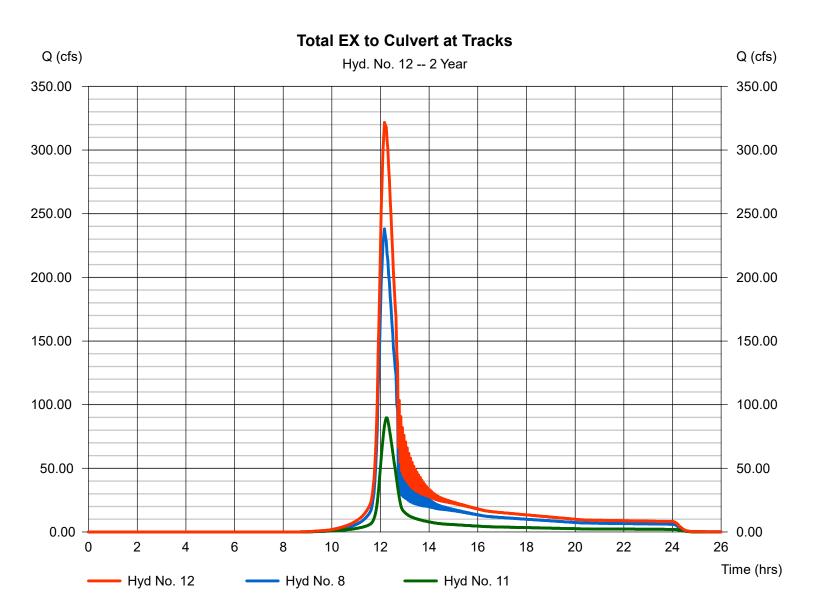


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 11

DA to Culvert at Tracks

Hydrograph type	= SCS Runoff	Peak discharge	= 89.60 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 408,597 cuft
Drainage area	= 68.990 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.30 min
Total precip.	= 3.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

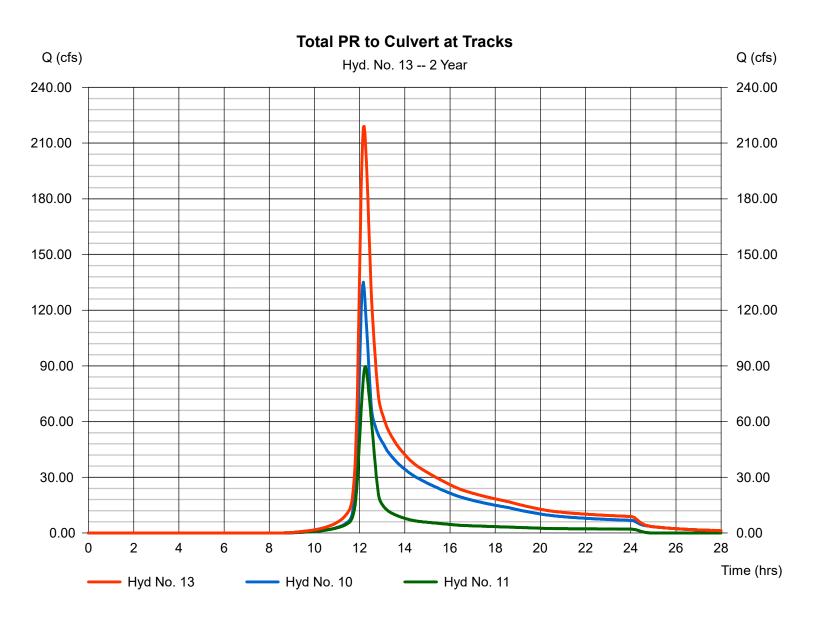


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 12

Total EX to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 321.68 cfs
Storm frequency	= 2 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = 1,538,951 cuft
Inflow hyds.	= 8, 11	Contrib. drain. area = 68.990 ac



Hydraflow Hydrographs by Intelisolve v9.22

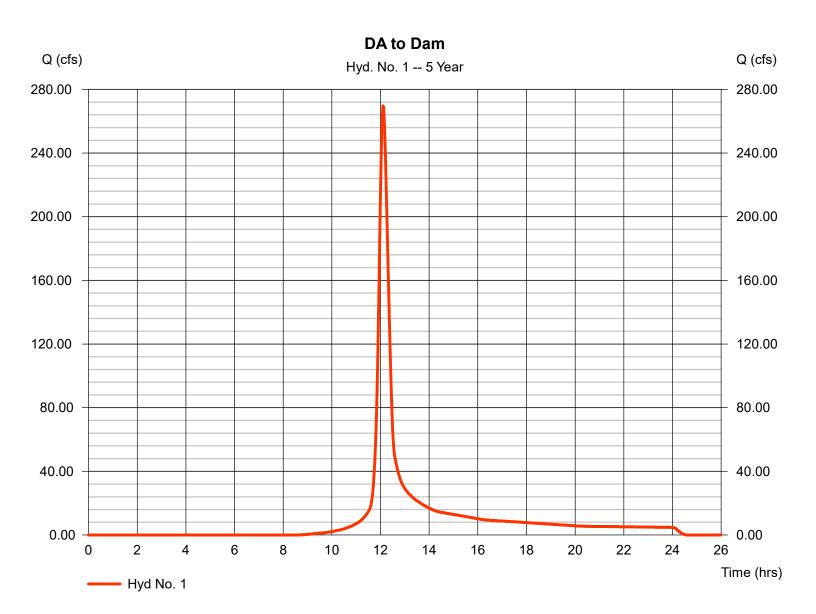
Hyd. No. 13

Total PR to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 219.02 cfs
Storm frequency	= 2 yrs	Time to peak = 12.20 hrs
Time interval	= 2 min	Hyd. volume = 1,508,991 cuft
Inflow hyds.	= 10, 11	Contrib. drain. area = 68.990 ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.22

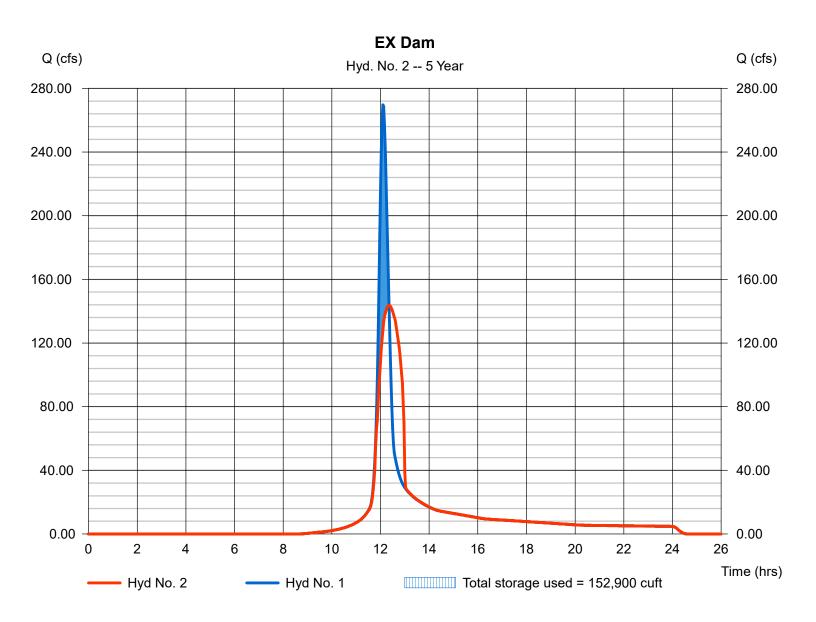

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	269.70	2	726	936,440				DA to Dam
2	Reservoir	143.57	2	742	936,383	1	257.10	152,900	EX Dam
3	Reservoir	43.57	2	760	906,519	1	255.63	443,611	PR Dam
4	SCS Runoff	33.84	2	730	135,585				DA to School Basin
5	Reservoir	18.44	2	748	135,577	4	272.89	39,715	EX School Basin
6	SCS Runoff	165.88	2	726	572,985				EX DA to Knight Rd Culvert
7	Combine	308.22	2	728	1,644,944	2, 5, 6			Total EX to Knight Rd Culvert
8	Reach	311.00	2	730	1,644,911	7			EX Knight Rd Culvert
9	Combine	201.22	2	728	1,615,079	3, 5, 6,			Total PR to Knight Rd Culvert
10	Reach	201.72	2	730	1,614,954	9			PR Knight Rd Culvert
11	SCS Runoff	128.23	2	734	581,100				DA to Culvert at Tracks
12	Combine	431.54	2	730	2,226,012	8, 11			Total EX to Culvert at Tracks
13	Combine	322.26	2	730	2,196,052	10, 11,			Total PR to Culvert at Tracks
Bro	okside Ave F	lood Stud	ly - Dam	gpw	Return P	eriod: 5 Ye	ar	Monday, Ma	ar 13, 2023

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 1

DA to Dam

Hydrograph type	= SCS Runoff	Peak discharge	= 269.70 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 936,440 cuft
Drainage area	= 125.440 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.90 min
Total precip.	= 4.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

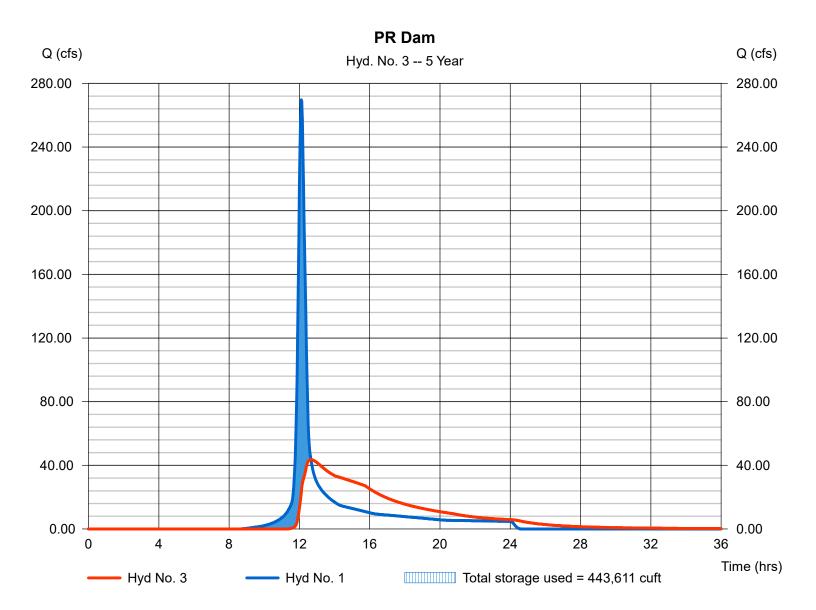

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 2

EX Dam

Hydrograph type	= Reservoir	Peak discharge	= 143.57 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.37 hrs
Time interval	= 2 min	Hyd. volume	= 936,383 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 257.10 ft
Reservoir name	= EX Dam	Max. Storage	= 152,900 cuft

Storage Indication method used.


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 3

PR Dam

Hydrograph type	= Reservoir	Peak discharge	= 43.57 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.67 hrs
Time interval	= 2 min	Hyd. volume	= 906,519 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 255.63 ft
Reservoir name	= PR Dam - OCS and Grading	Max. Storage	= 443,611 cuft

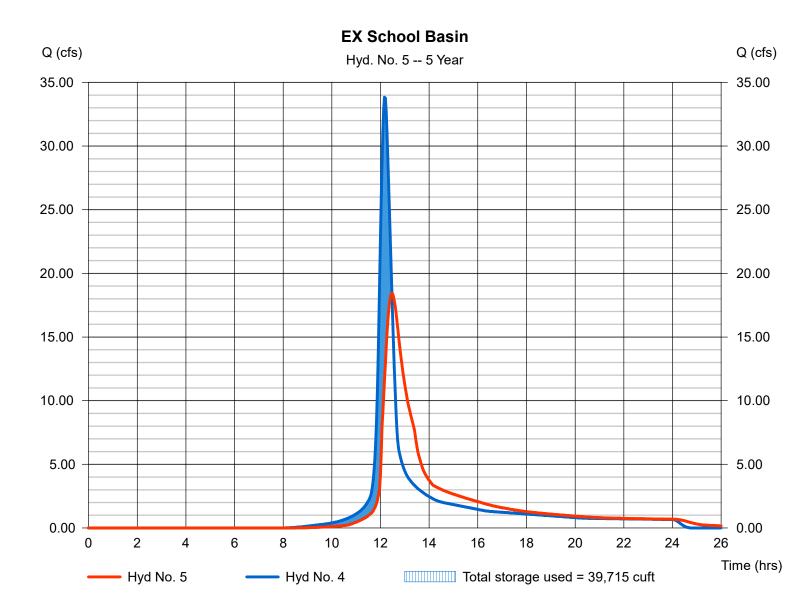
Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 4

DA to School Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 33.84 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 135,585 cuft
Drainage area	= 17.130 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.50 min
Total precip.	= 4.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

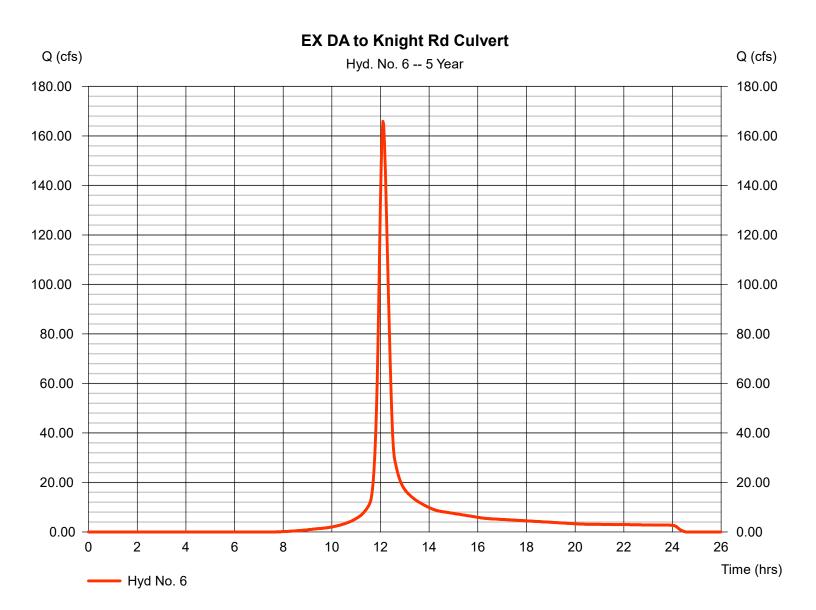

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 5

EX School Basin

= Reservoir	Peak discharge	= 18.44 cfs
= 5 yrs	Time to peak	= 12.47 hrs
= 2 min	Hyd. volume	= 135,577 cuft
= 4 - DA to School Basin	Max. Elevation	= 272.89 ft
= EX School Basin	Max. Storage	= 39,715 cuft
	= 5 yrs= 2 min= 4 - DA to School Basin	= 5 yrsTime to peak= 2 minHyd. volume= 4 - DA to School BasinMax. Elevation

Storage Indication method used.

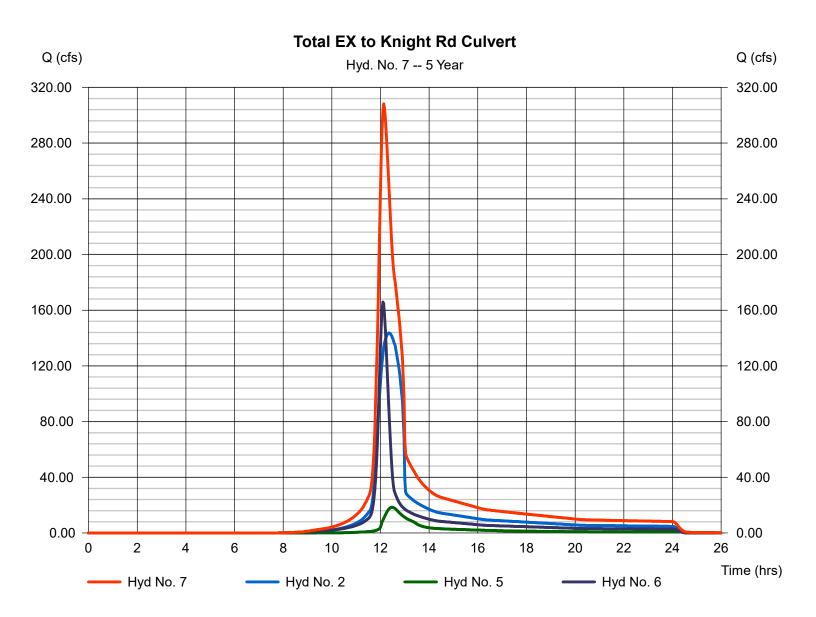


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 6

EX DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 165.88 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 572,985 cuft
Drainage area	= 68.530 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 4.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

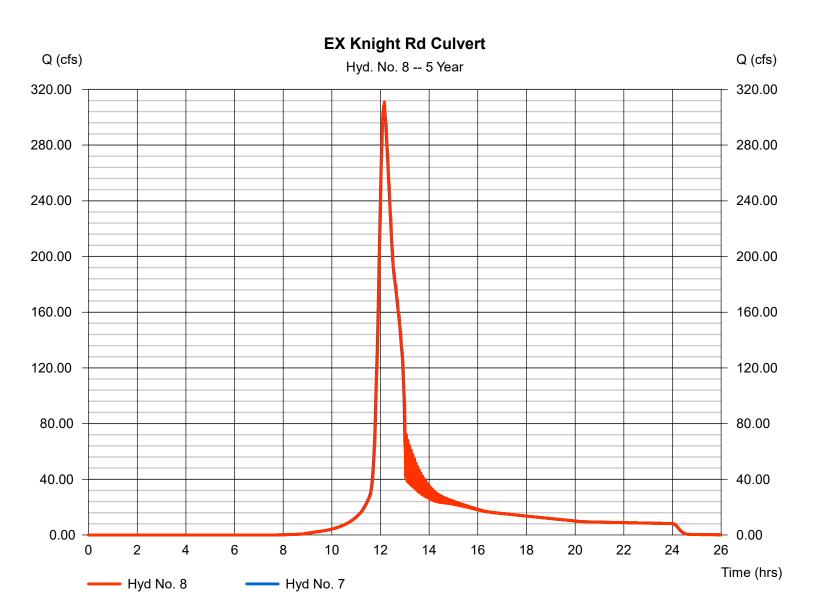


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 7

Total EX to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 308.22 cfs
Storm frequency	= 5 yrs	Time to peak = 12.13 hrs
Time interval	= 2 min	Hyd. volume = 1,644,944 cuft
Inflow hyds.	= 2, 5, 6	Contrib. drain. area = 68.530 ac

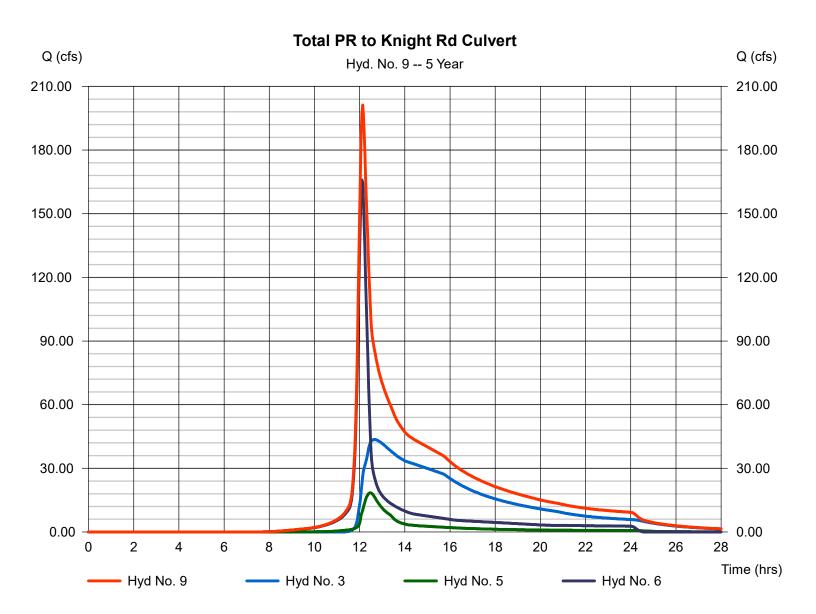

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 8

EX Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 311.00 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 1,644,911 cuft
Inflow hyd. No.	= 7 - Total EX to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 26.57 ft/s	Routing coeff.	= 1.9566

Modified Att-Kin routing method used.

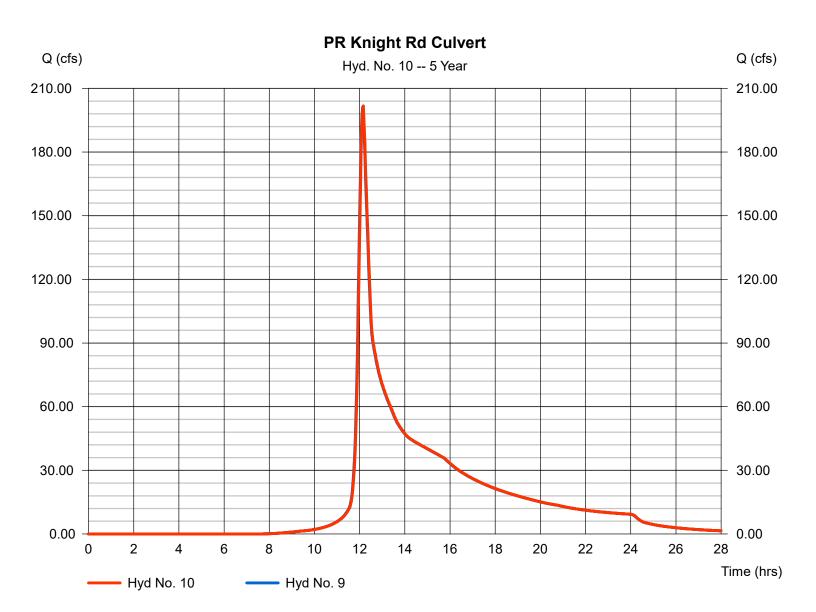


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 9

Total PR to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 201.22 cfs
Storm frequency	= 5 yrs	Time to peak = 12.13 hrs
Time interval	= 2 min	Hyd. volume = 1,615,079 cuft
Inflow hyds.	= 3, 5, 6	Contrib. drain. area = 68.530 ac

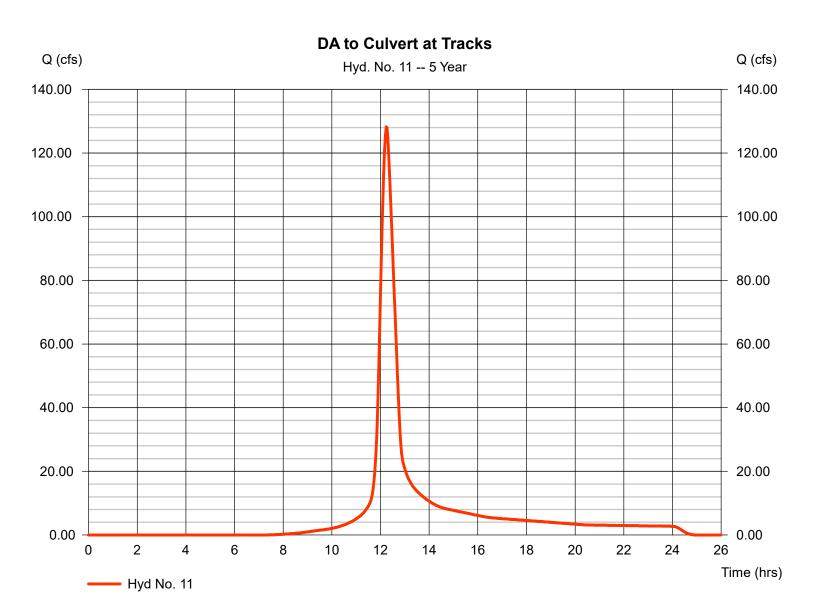

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 10

PR Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 201.72 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 1,614,954 cuft
Inflow hyd. No.	= 9 - Total PR to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 22.81 ft/s	Routing coeff.	= 1.9496

Modified Att-Kin routing method used.

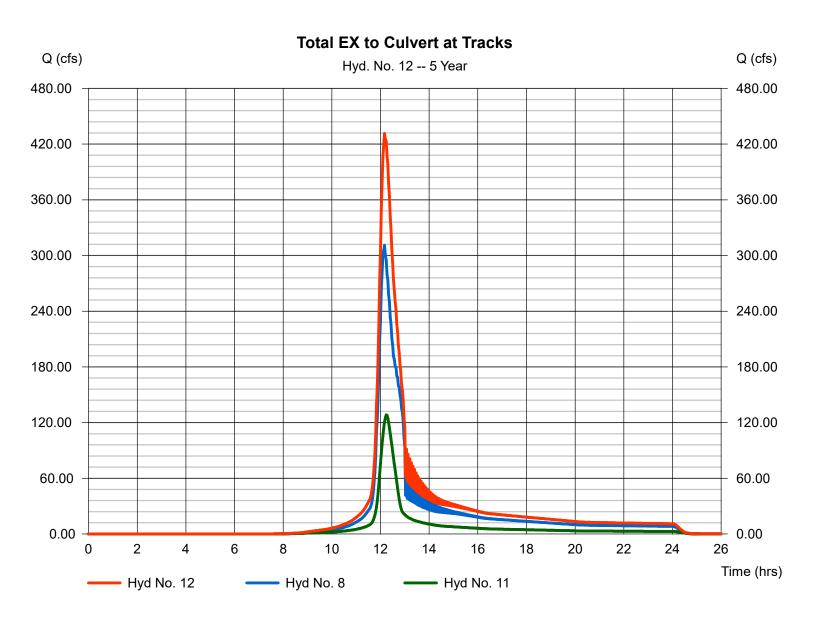


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 11

DA to Culvert at Tracks

Hydrograph type	= SCS Runoff	Peak discharge	= 128.23 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 581,100 cuft
Drainage area	= 68.990 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.30 min
Total precip.	= 4.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

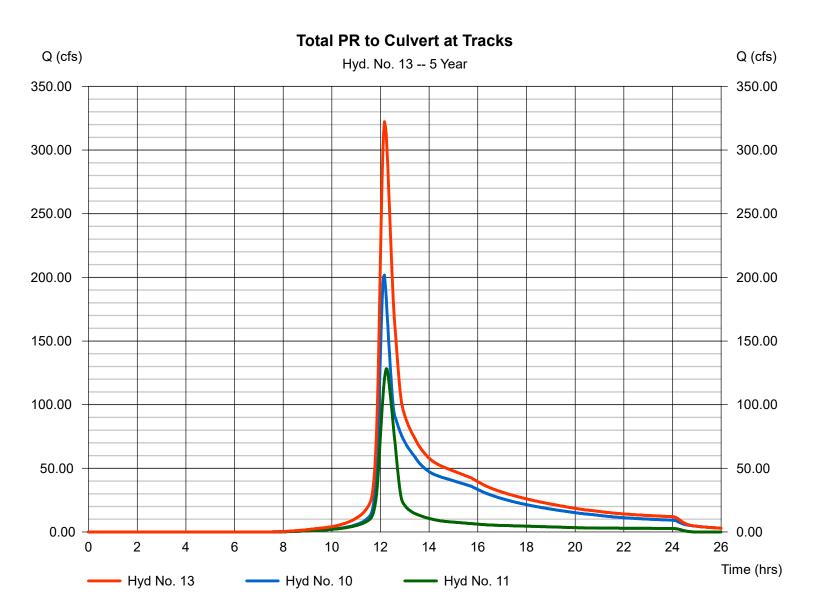


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 12

Total EX to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 431.54 cfs
Storm frequency	= 5 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = 2,226,012 cuft
Inflow hyds.	= 8, 11	Contrib. drain. area = 68.990 ac



Hydraflow Hydrographs by Intelisolve v9.22

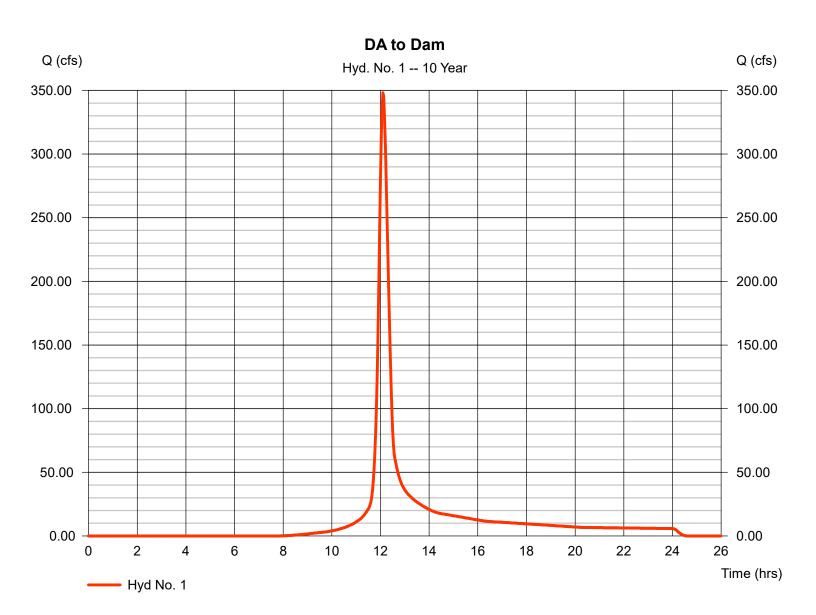
Hyd. No. 13

Total PR to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 322.26 cfs
Storm frequency	= 5 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = $2,196,052$ cuft
Inflow hyds.	= 10, 11	Contrib. drain. area = 68.990 ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.22

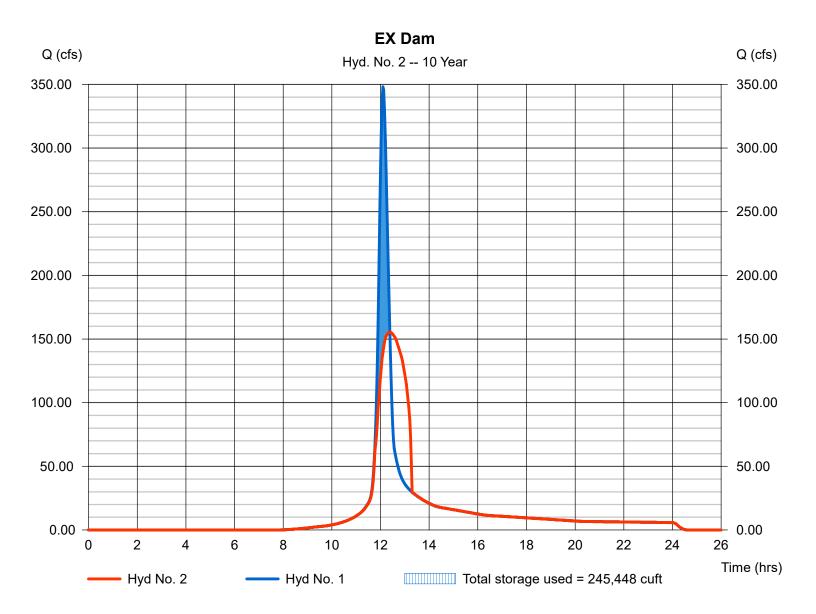

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	348.18	2	726	1,203,285				DA to Dam
2	Reservoir	155.32	2	744	1,203,227	1	258.61	245,448	EX Dam
3	Reservoir	62.56	2	754	1,173,364	1	256.68	571,479	PR Dam
4	SCS Runoff	43.17	2	730	172,509				DA to School Basin
5	Reservoir	24.40	2	748	172,501	4	273.29	49,337	EX School Basin
6	SCS Runoff	210.08	2	726	725,522				EX DA to Knight Rd Culvert
7	Combine	365.25	2	728	2,101,253	2, 5, 6			Total EX to Knight Rd Culvert
8	Reach	368.57	2	728	2,101,216	7			EX Knight Rd Culvert
9	Combine	254.17	2	728	2,071,385	3, 5, 6,			Total PR to Knight Rd Culvert
10	Reach	254.20	2	728	2,071,259	9			PR Knight Rd Culvert
11	SCS Runoff	161.67	2	734	732,316				DA to Culvert at Tracks
12	Combine	518.45	2	732	2,833,535	8, 11			Total EX to Culvert at Tracks
13	Combine	406.73	2	730	2,803,575	10, 11,			Total PR to Culvert at Tracks
Bro	okside Ave F	lood Stud	ly - Dam	.gpw	Return P	eriod: 10 Y	/ear	Monday, Ma	ar 13, 2023

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 1

DA to Dam

Hydrograph type	= SCS Runoff	Peak discharge	= 348.18 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 1,203,285 cuft
Drainage area	= 125.440 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.90 min
Total precip.	= 4.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

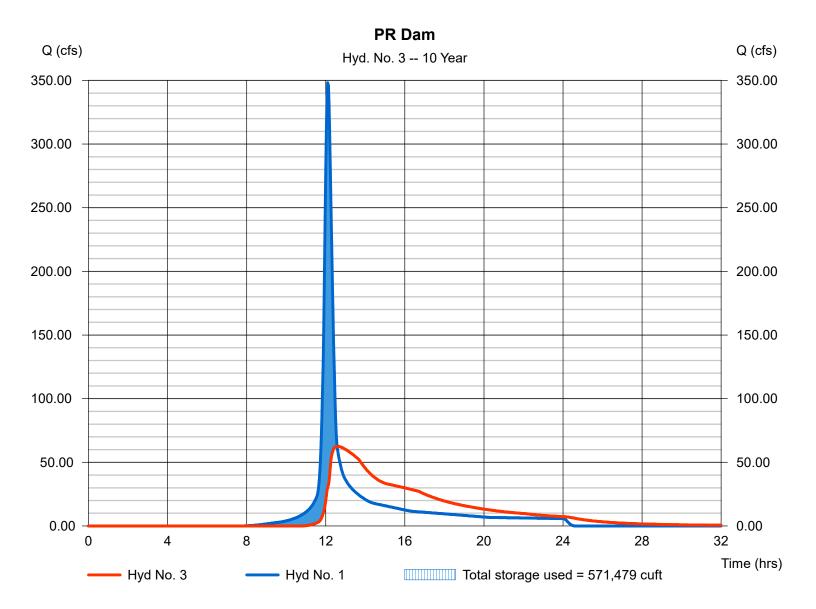

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 2

EX Dam

Hydrograph type	= Reservoir	Peak discharge	= 155.32 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.40 hrs
Time interval	= 2 min	Hyd. volume	= 1,203,227 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 258.61 ft
Reservoir name	= EX Dam	Max. Storage	= 245,448 cuft

Storage Indication method used.

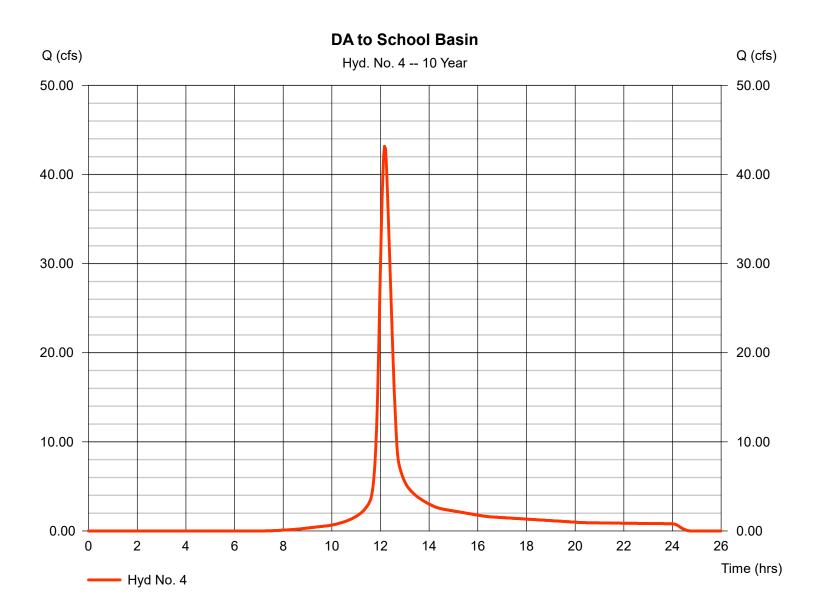

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 3

PR Dam

Hydrograph type	= Reservoir	Peak discharge	= 62.56 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.57 hrs
Time interval	= 2 min	Hyd. volume	= 1,173,364 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 256.68 ft
Reservoir name	= PR Dam - OCS and Grading	Max. Storage	= 571,479 cuft

Storage Indication method used.



Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 4

DA to School Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 43.17 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 172,509 cuft
Drainage area	= 17.130 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.50 min
Total precip.	= 4.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 5

EX School Basin

Hydrograph type	= Reservoir	Peak discharge	= 24.40 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.47 hrs
Time interval	= 2 min	Hyd. volume	= 172,501 cuft
Inflow hyd. No.	= 4 - DA to School Basin	Max. Elevation	= 273.29 ft
Reservoir name	= EX School Basin	Max. Storage	= 49,337 cuft
Time interval Inflow hyd. No.	= 2 min = 4 - DA to School Basin	Hyd. volume Max. Elevation	= 172,501 cuft = 273.29 ft

Storage Indication method used.

0.00

0

2

Hyd No. 5

4

6

8

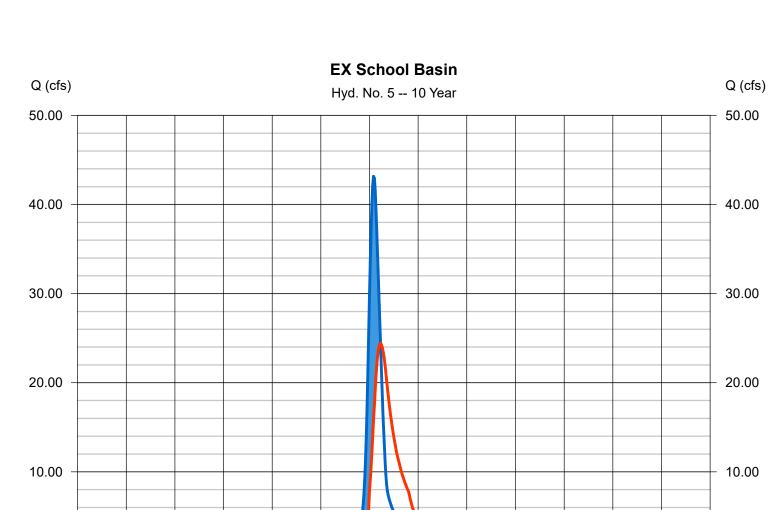
10

Hyd No. 4

12

14

16


18

Total storage used = 49,337 cuft

20

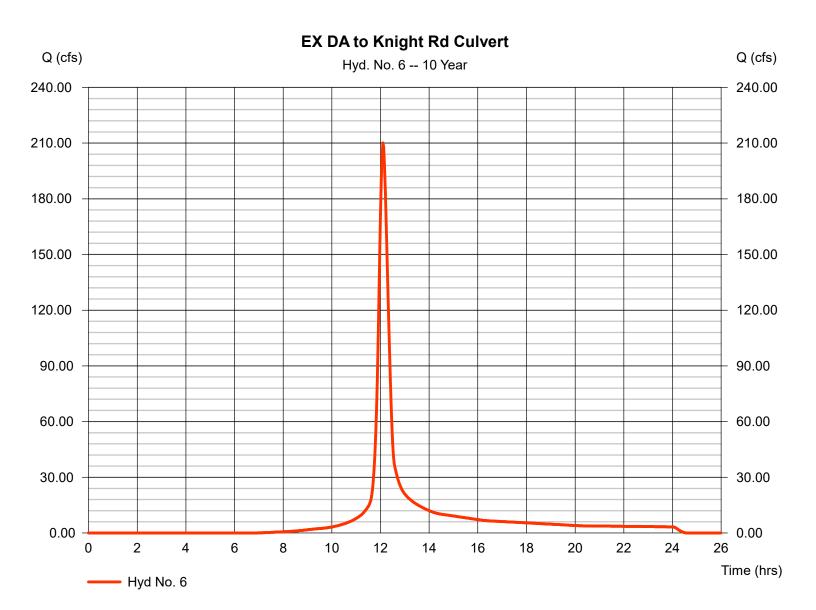
22

24

Monday, Mar 13, 2023

0.00

Time (hrs)

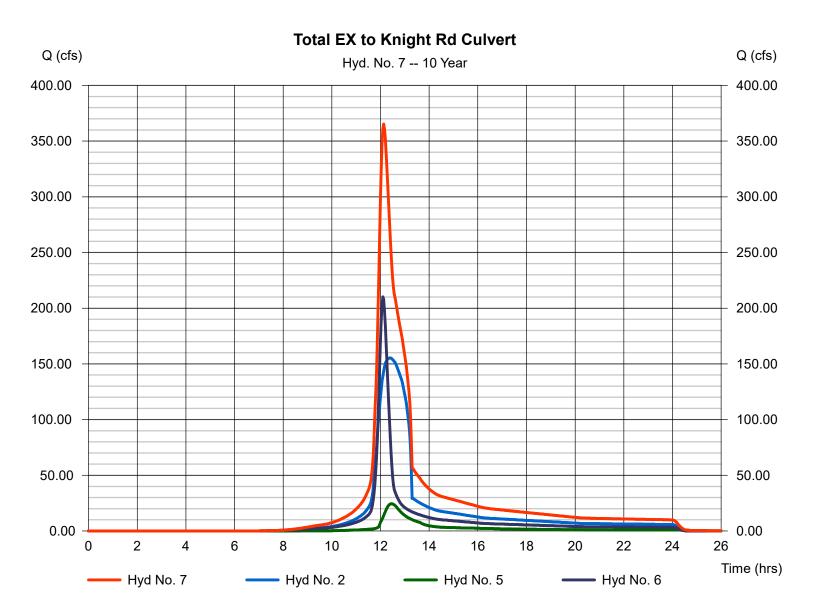

26

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 6

EX DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 210.08 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 725,522 cuft
Drainage area	= 68.530 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 4.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

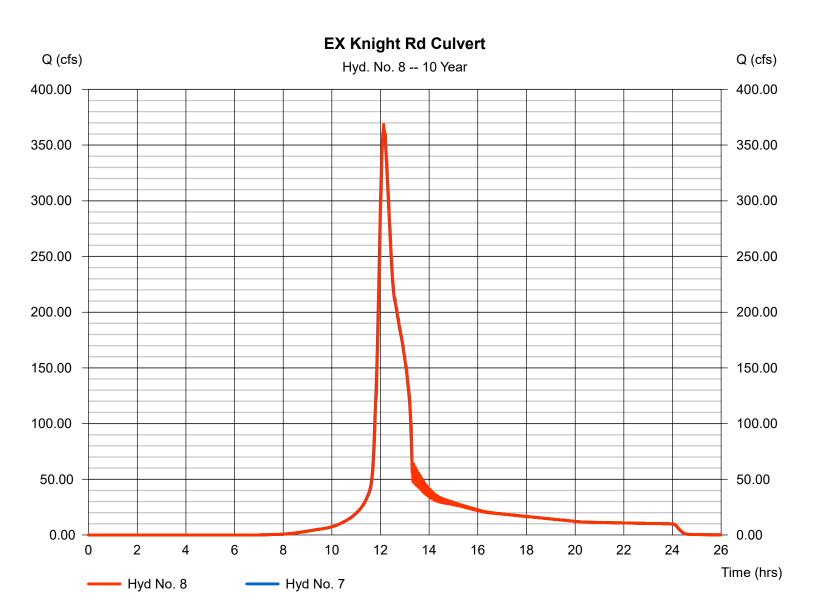


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 7

Total EX to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 365.25 cfs
Storm frequency	= 10 yrs	Time to peak = 12.13 hrs
Time interval	= 2 min	Hyd. volume = 2,101,253 cuft
Inflow hyds.	= 2, 5, 6	Contrib. drain. area = 68.530 ac

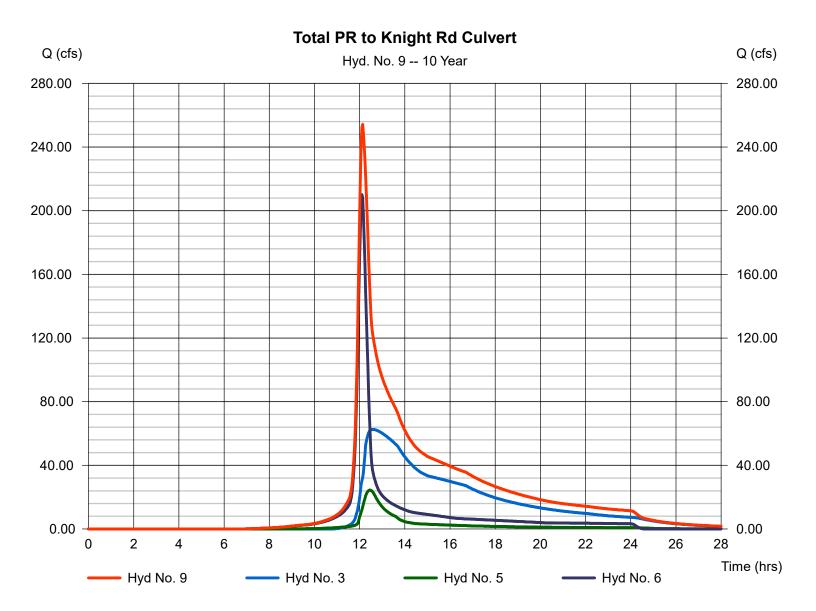

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 8

EX Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 368.57 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 2,101,216 cuft
Inflow hyd. No.	= 7 - Total EX to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 28.23 ft/s	Routing coeff.	= 1.9591

Modified Att-Kin routing method used.

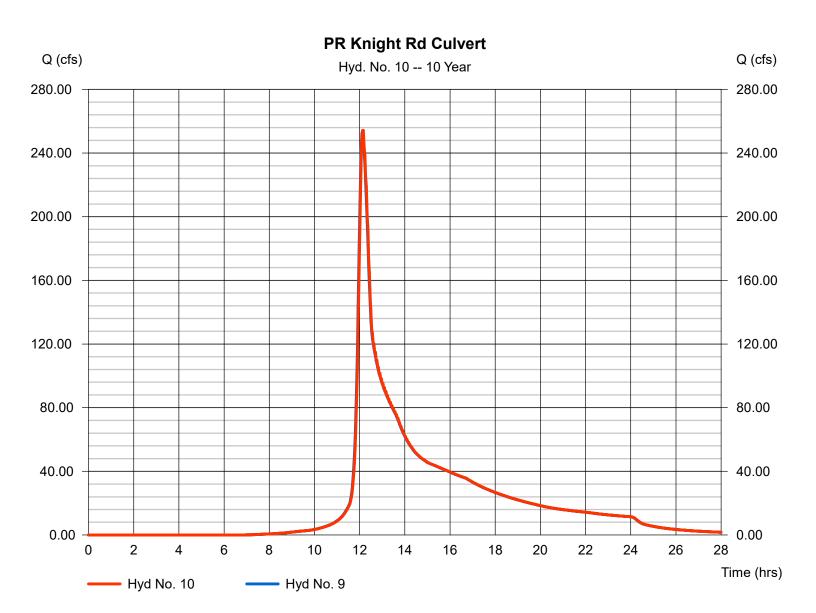


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 9

Total PR to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 254.17 cfs
Storm frequency	= 10 yrs	Time to peak = 12.13 hrs
Time interval	= 2 min	Hyd. volume = 2,071,385 cuft
Inflow hyds.	= 3, 5, 6	Contrib. drain. area = 68.530 ac

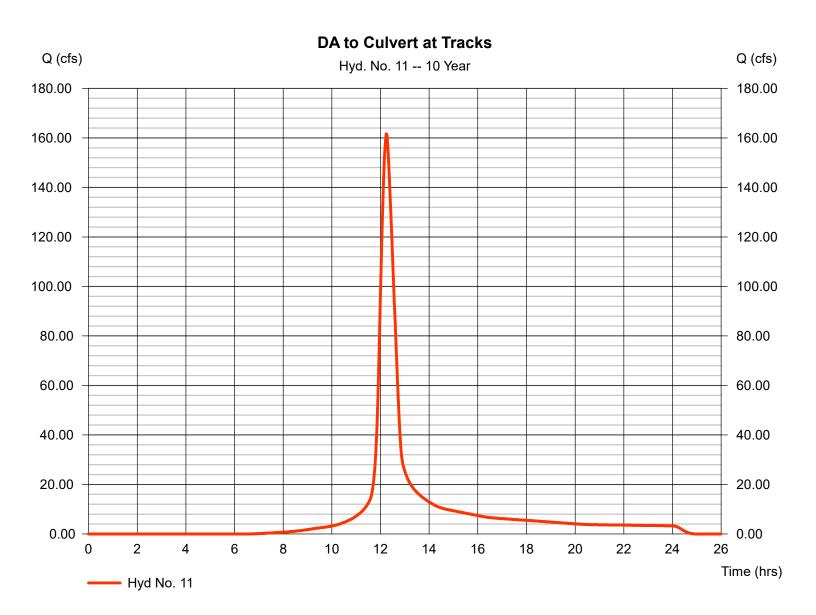

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 10

PR Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 254.20 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 2,071,259 cuft
Inflow hyd. No.	= 9 - Total PR to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 24.80 ft/s	Routing coeff.	= 1.9536

Modified Att-Kin routing method used.

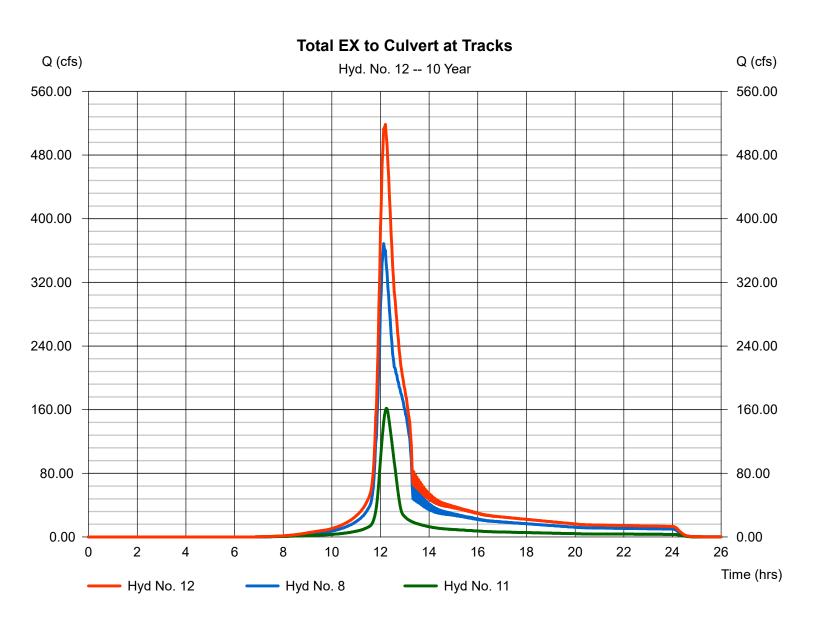


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 11

DA to Culvert at Tracks

Hydrograph type	= SCS Runoff	Peak discharge	= 161.67 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 732,316 cuft
Drainage area	= 68.990 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.30 min
Total precip.	= 4.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
Tc method Total precip.	= TR55 = 4.76 in	Time of conc. (Tc) Distribution	= 35.30 min = Type II

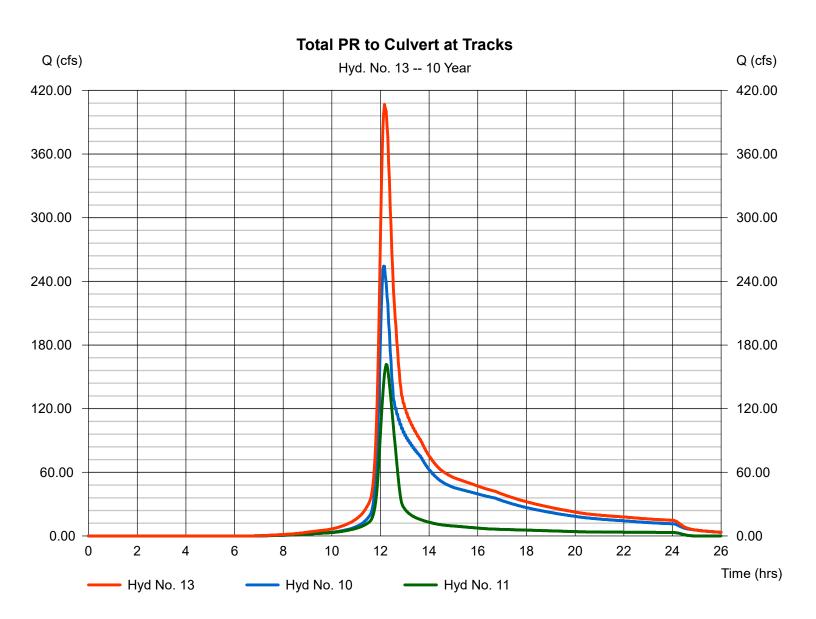


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 12

Total EX to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 518.45 cfs
Storm frequency	= 10 yrs	Time to peak = 12.20 hrs
Time interval	= 2 min	Hyd. volume = 2,833,535 cuft
Inflow hyds.	= 8, 11	Contrib. drain. area = 68.990 ac



Hydraflow Hydrographs by Intelisolve v9.22

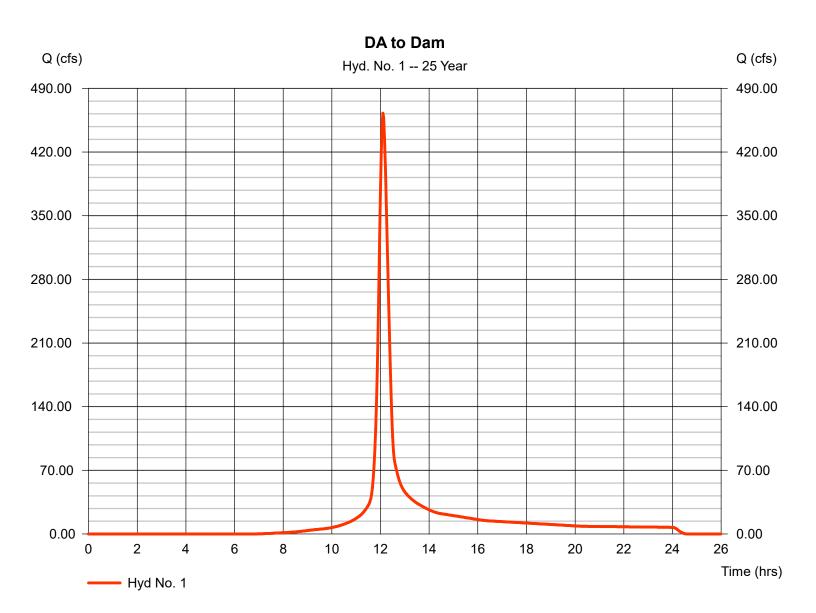
Hyd. No. 13

Total PR to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 406.73 cfs
Storm frequency	= 10 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = 2,803,575 cuft
Inflow hyds.	= 10, 11	Contrib. drain. area = 68.990 ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.22

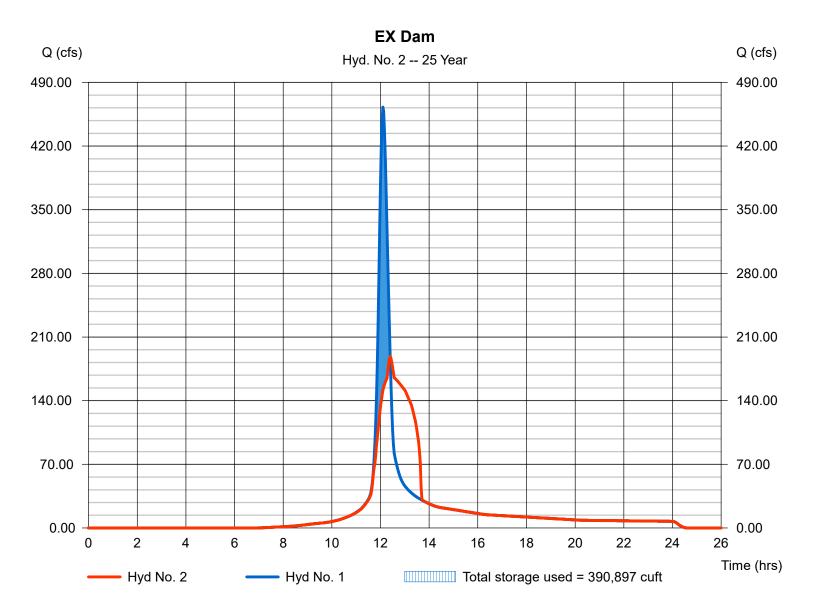

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	462.79	2	726	1,598,249				DA to Dam
2	Reservoir	188.75	2	744	1,598,191	1	260.23	390,897	EX Dam
3	Reservoir	85.01	2	754	1,568,328	1	258.16	769,690	PR Dam
4	SCS Runoff	56.70	2	730	226,814				DA to School Basin
5	Reservoir	33.06	2	746	226,806	4	273.90	63,633	EX School Basin
6	SCS Runoff	273.90	2	726	949,184				EX DA to Knight Rd Culvert
7	Combine	444.90	2	728	2,774,184	2, 5, 6			Total EX to Knight Rd Culvert
8	Reach	445.40	2	728	2,774,151	7			EX Knight Rd Culvert
9	Combine	344.24	2	728	2,744,325	3, 5, 6,			Total PR to Knight Rd Culvert
10	Reach	344.56	2	728	2,744,193	9			PR Knight Rd Culvert
11	SCS Runoff	209.86	2	734	953,392				DA to Culvert at Tracks
12	Combine	643.34	2	730	3,727,539	8, 11			Total EX to Culvert at Tracks
13	Combine	542.85	2	730	3,697,583	10, 11,			Total PR to Culvert at Tracks
Bro	okside Ave F	lood Stud	ly - Dam	.gpw	Return P	eriod: 25 Y	′ear	Monday, Ma	ar 13, 2023

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 1

DA to Dam

Hydrograph type	= SCS Runoff	Peak discharge	= 462.79 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 1,598,249 cuft
Drainage area	= 125.440 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.90 min
Total precip.	= 5.74 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

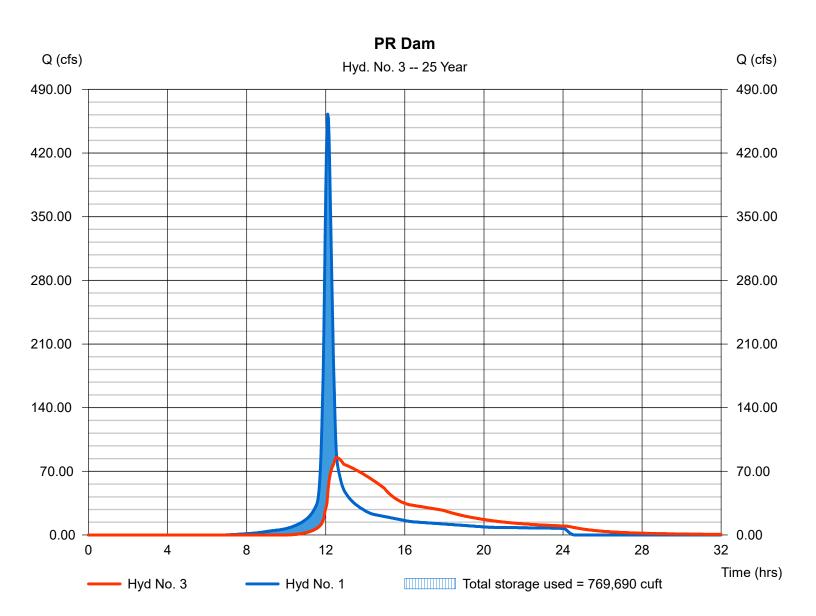

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 2

EX Dam

Hydrograph type	= Reservoir	Peak discharge	= 188.75 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.40 hrs
Time interval	= 2 min	Hyd. volume	= 1,598,191 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 260.23 ft
Reservoir name	= EX Dam	Max. Storage	= 390,897 cuft

Storage Indication method used.

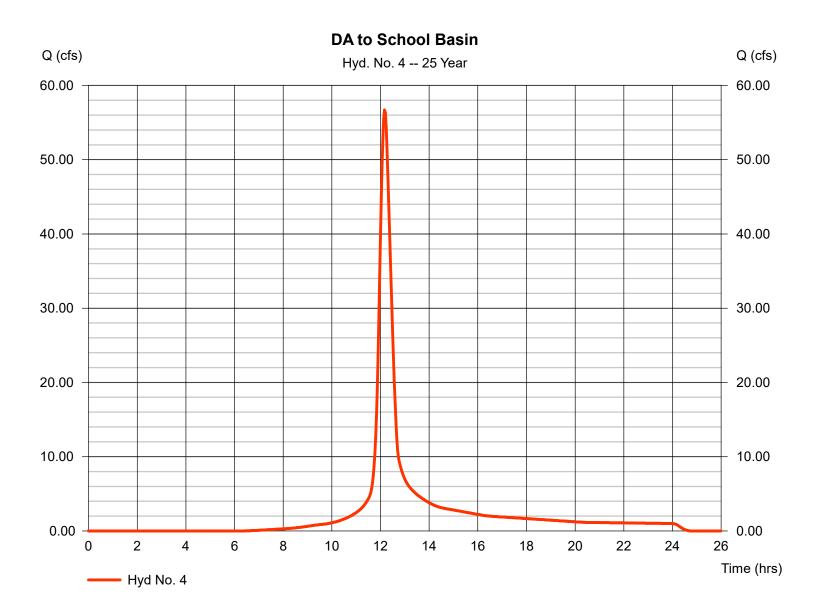

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 3

PR Dam

Reservoir	Peak discharge	= 85.01 cfs
25 yrs	Time to peak	= 12.57 hrs
2 min	Hyd. volume	= 1,568,328 cuft
l - DA to Dam	Max. Elevation	= 258.16 ft
PR Dam - OCS and Grading	Max. Storage	= 769,690 cuft
	25 yrs 2 min - DA to Dam	25 yrsTime to peak2 minHyd. volume- DA to DamMax. Elevation

Storage Indication method used.

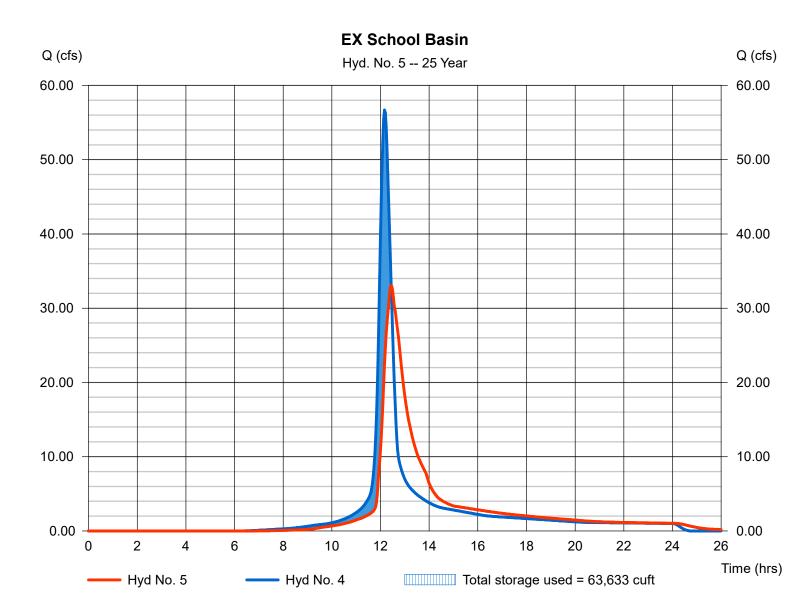


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 4

DA to School Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 56.70 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 226,814 cuft
Drainage area	= 17.130 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.50 min
Total precip.	= 5.74 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

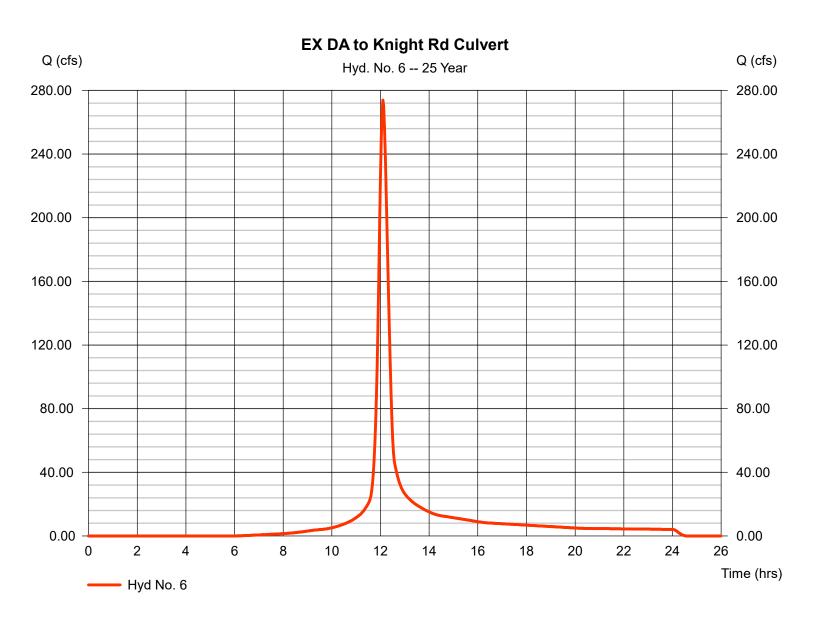

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 5

EX School Basin

ofs
nrs
6 cuft
ft
cuft

Storage Indication method used.

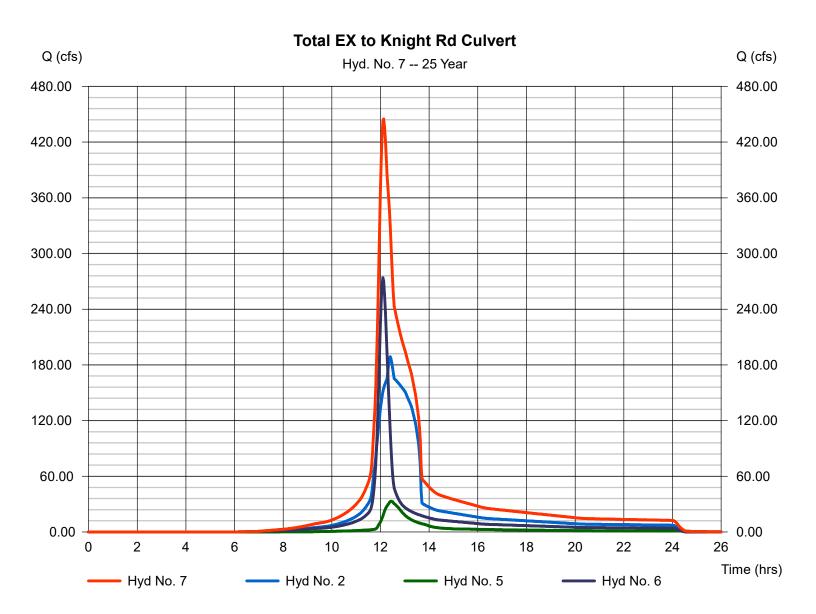


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 6

EX DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 273.90 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 949,184 cuft
Drainage area	= 68.530 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 5.74 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

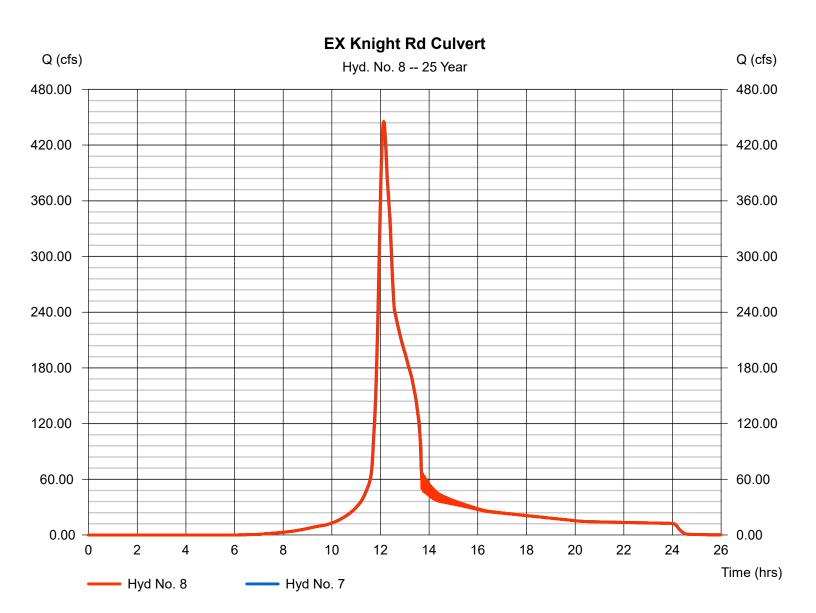


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 7

Total EX to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 444.90 cfs
Storm frequency	= 25 yrs	Time to peak = 12.13 hrs
Time interval	= 2 min	Hyd. volume = 2,774,184 cuft
Inflow hyds.	= 2, 5, 6	Contrib. drain. area = 68.530 ac

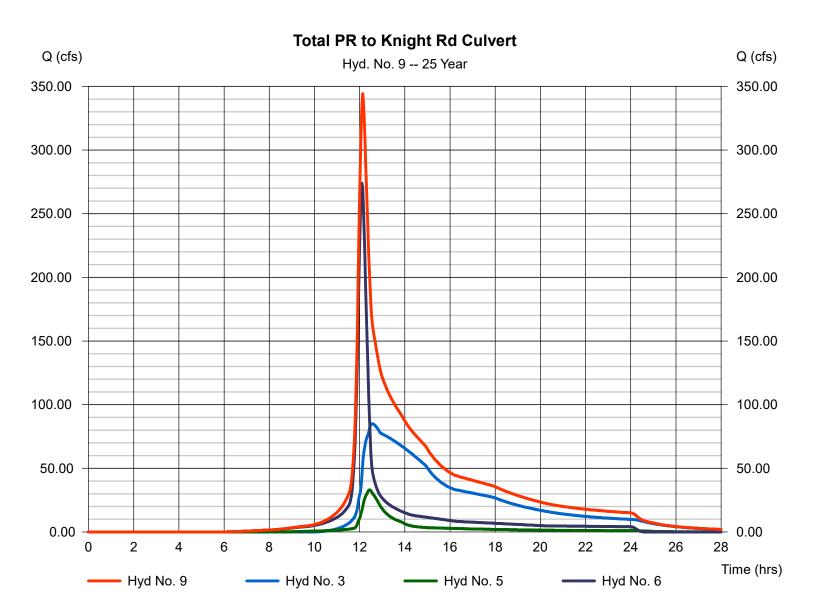

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 8

EX Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 445.40 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 2,774,151 cuft
Inflow hyd. No.	= 7 - Total EX to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 30.29 ft/s	Routing coeff.	= 1.9618

Modified Att-Kin routing method used.

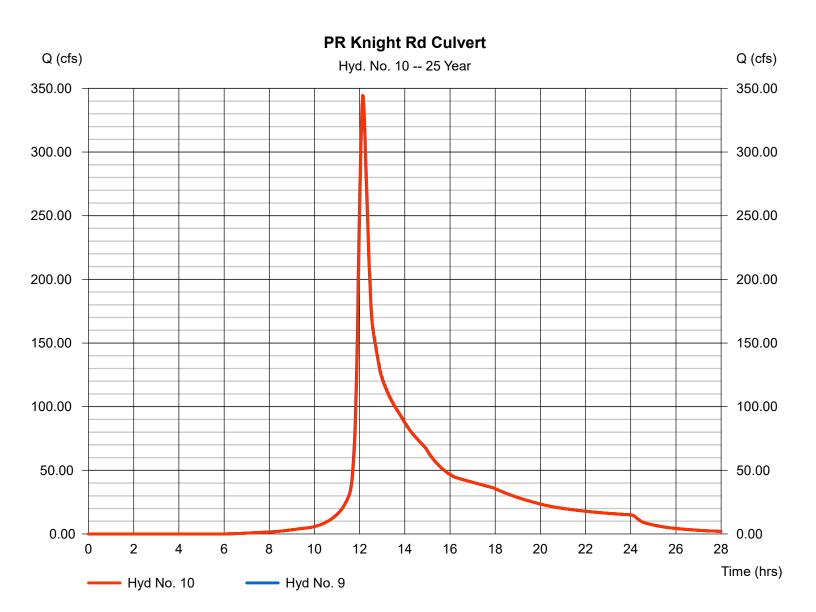


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 9

Total PR to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 344.24 cfs
Storm frequency	= 25 yrs	Time to peak = 12.13 hrs
Time interval	= 2 min	Hyd. volume = 2,744,325 cuft
Inflow hyds.	= 3, 5, 6	Contrib. drain. area = 68.530 ac
nnow nyus.	- 0, 0, 0	

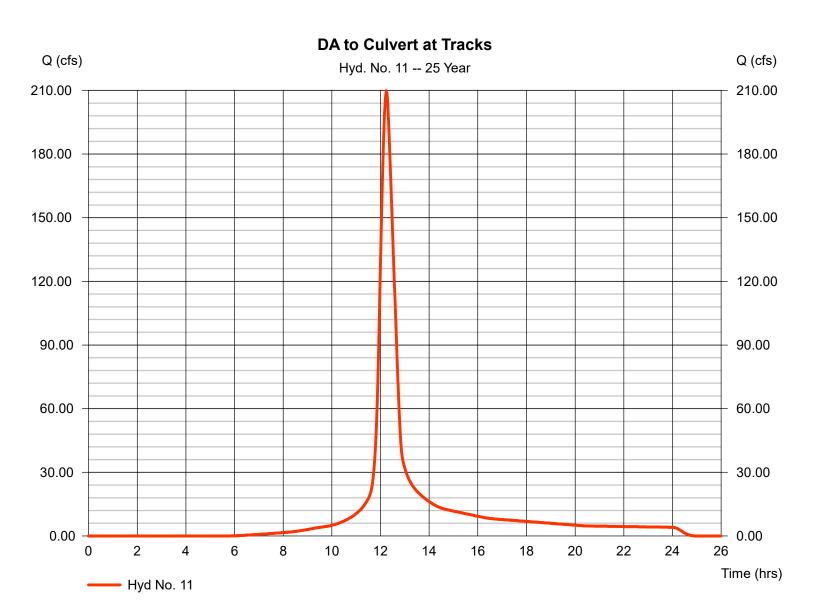

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 10

PR Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 344.56 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 2,744,193 cuft
Inflow hyd. No.	= 9 - Total PR to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 27.64 ft/s	Routing coeff.	= 1.9582

Modified Att-Kin routing method used.

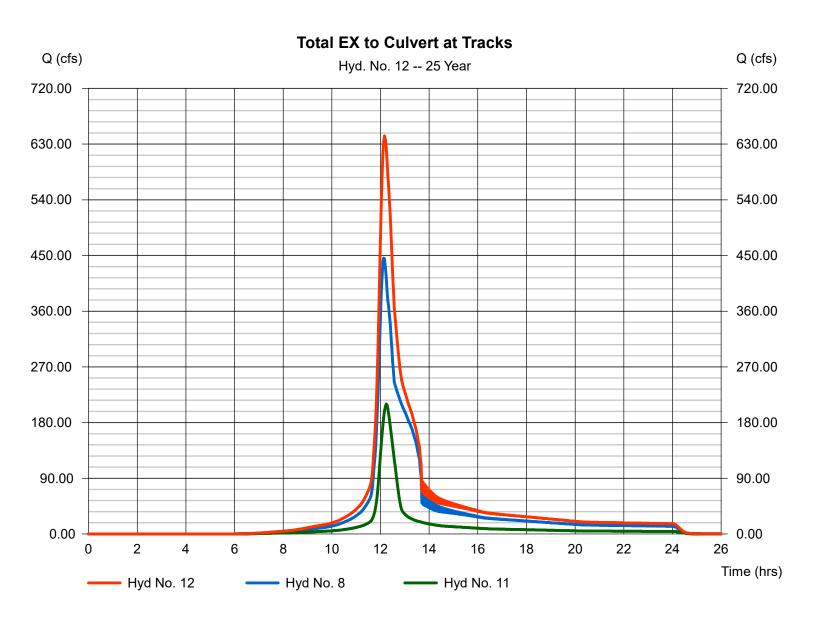


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 11

DA to Culvert at Tracks

Hydrograph type	= SCS Runoff	Peak discharge	= 209.86 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 953,392 cuft
Drainage area	= 68.990 ac	Curve number	= 83
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.30 min
Total precip.	= 5.74 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

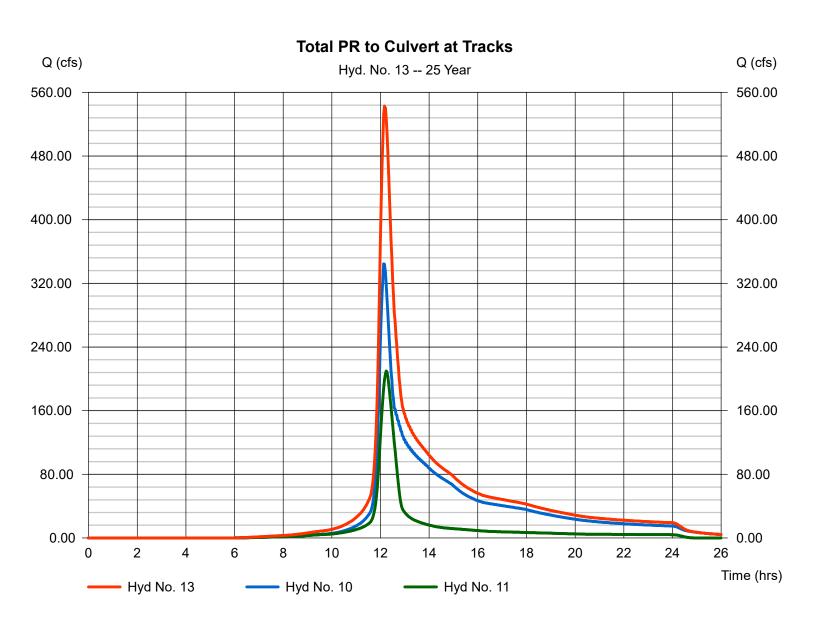


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 12

Total EX to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 643.34 cfs
Storm frequency	= 25 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = $3,727,539$ cuft
Inflow hyds.	= 8, 11	Contrib. drain. area = 68.990 ac



Hydraflow Hydrographs by Intelisolve v9.22

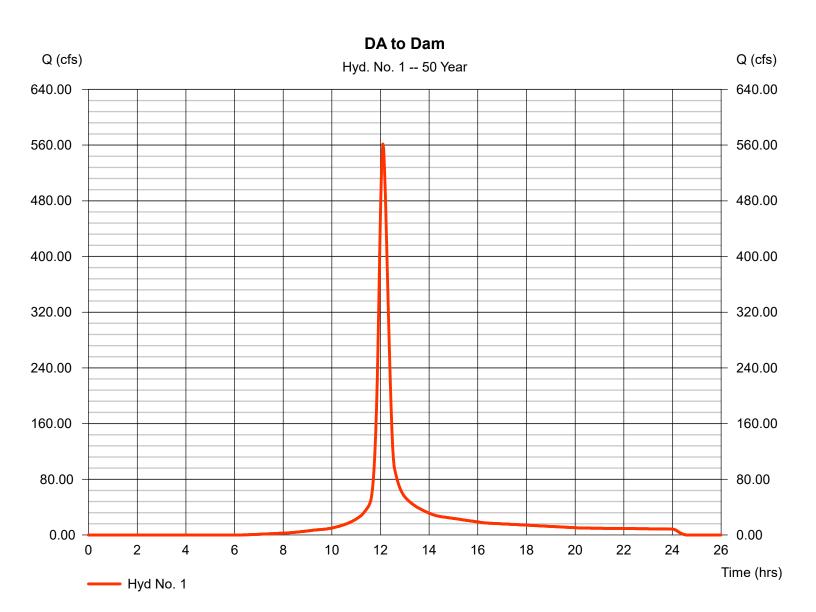
Hyd. No. 13

Total PR to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 542.85 cfs
Storm frequency	= 25 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = 3,697,583 cuft
Inflow hyds.	= 10, 11	Contrib. drain. area = 68.990 ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.22

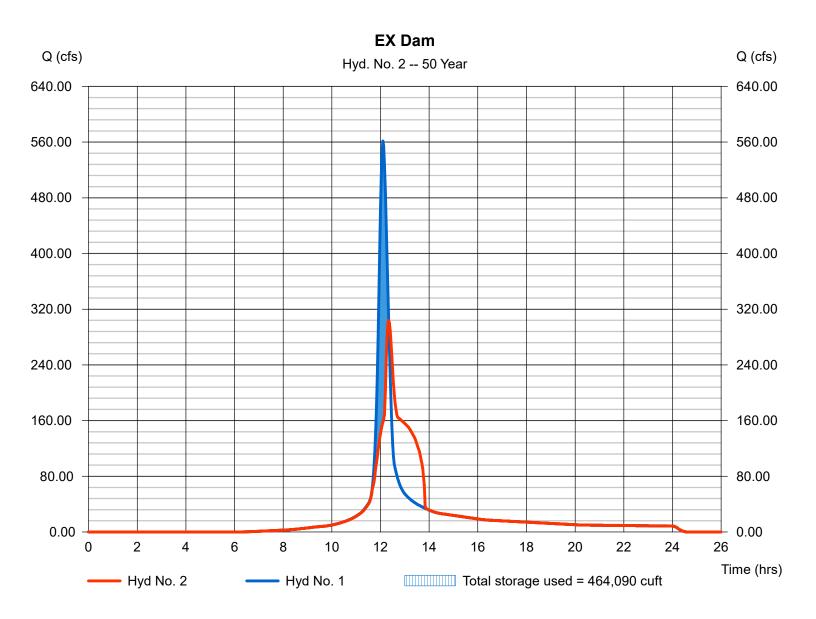

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	561.52	2	726	1,943,202				DA to Dam
2	Reservoir	303.95	2	740	1,943,144	1	260.80	464,090	EX Dam
3	Reservoir	143.09	2	748	1,913,282	1	259.07	907,972	PR Dam
4	SCS Runoff	68.29	2	730	274,011				DA to School Basin
5	Reservoir	46.22	2	744	274,003	4	274.19	72,104	EX School Basin
6	SCS Runoff	328.43	2	726	1,143,120				EX DA to Knight Rd Culvert
7	Combine	546.15	2	736	3,360,269	2, 5, 6			Total EX to Knight Rd Culvert
8	Reach	556.53	2	738	3,360,231	7			EX Knight Rd Culvert
9	Combine	415.63	2	728	3,330,410	3, 5, 6,			Total PR to Knight Rd Culvert
10	Reach	416.20	2	728	3,330,279	9			PR Knight Rd Culvert
11	SCS Runoff	250.96	2	734	1,144,656				DA to Culvert at Tracks
12	Combine	798.74	2	738	4,504,890	8, 11			Total EX to Culvert at Tracks
13	Combine	653.57	2	730	4,474,937	10, 11,			Total PR to Culvert at Tracks
Bro	okside Ave F	lood Stud	ly - Dam	.gpw	Return P	eriod: 50 Y	/ear	Monday, Ma	ar 13, 2023

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 1

DA to Dam

Hydrograph type	= SCS Runoff	Peak discharge	= 561.52 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 1,943,202 cuft
Drainage area	= 125.440 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.90 min
Total precip.	= 6.57 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

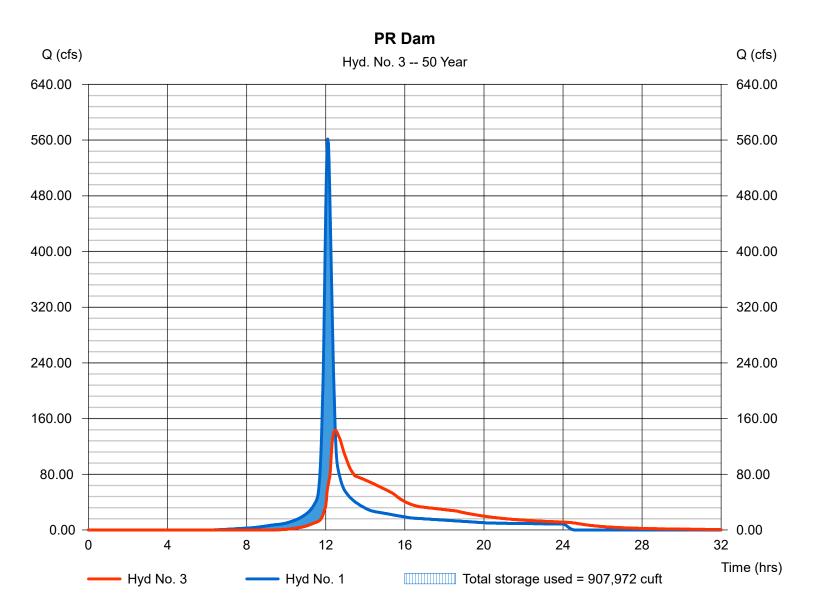

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 2

EX Dam

Hydrograph type	= Reservoir	Peak discharge	= 303.95 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 1,943,144 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 260.80 ft
Reservoir name	= EX Dam	Max. Storage	= 464,090 cuft
		_	

Storage Indication method used.

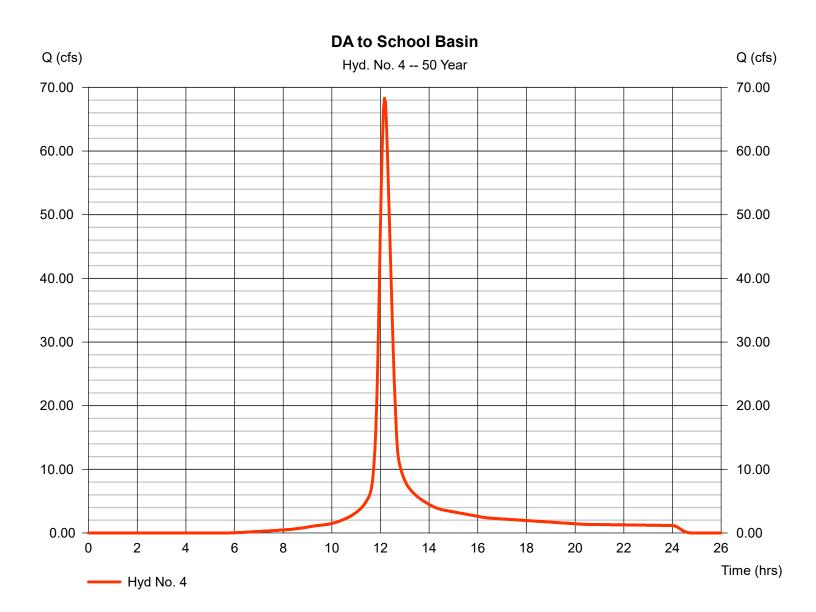

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 3

PR Dam

= 143.09 cfs
= 12.47 hrs
= 1,913,282 cuft
= 259.07 ft
907,972 cuft

Storage Indication method used.

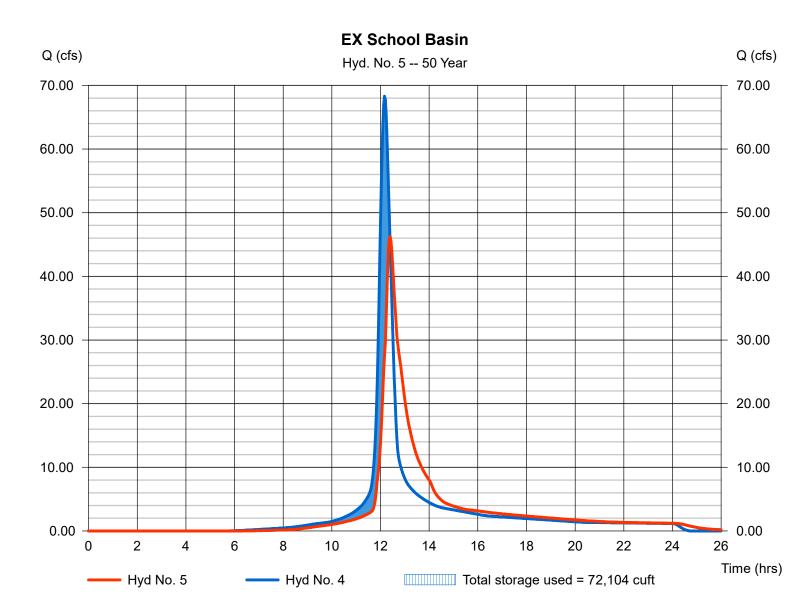


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 4

DA to School Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 68.29 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 274,011 cuft
Drainage area	= 17.130 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.50 min
Total precip.	= 6.57 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

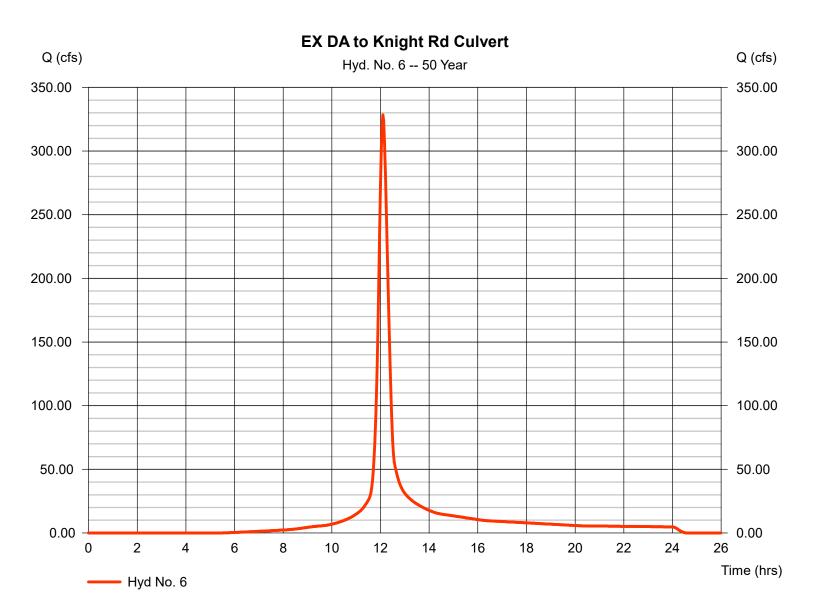

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 5

EX School Basin

Hydrograph type	= Reservoir	Peak discharge	= 46.22 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.40 hrs
Time interval	= 2 min	Hyd. volume	= 274,003 cuft
Inflow hyd. No.	= 4 - DA to School Basin	Max. Elevation	= 274.19 ft
Reservoir name	= EX School Basin	Max. Storage	= 72,104 cuft

Storage Indication method used.

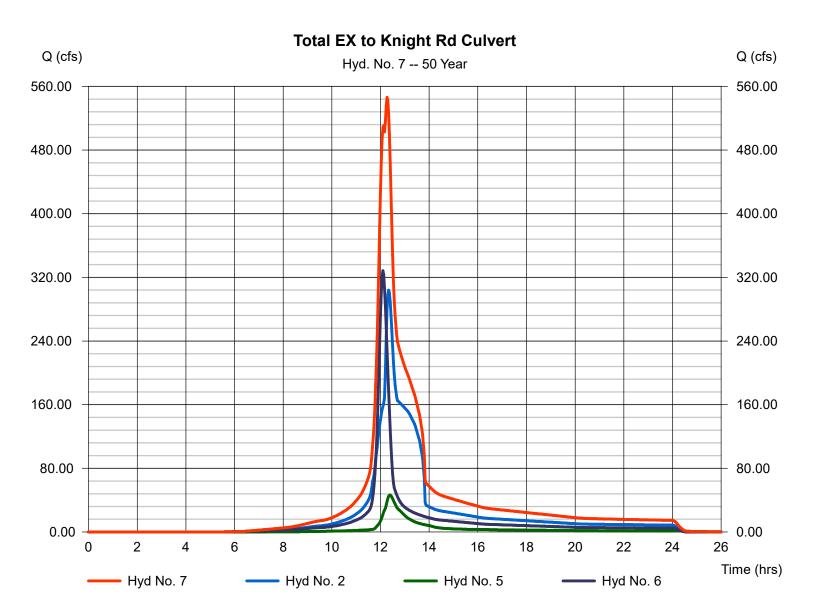


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 6

EX DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 328.43 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 1,143,120 cuft
Drainage area	= 68.530 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 6.57 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

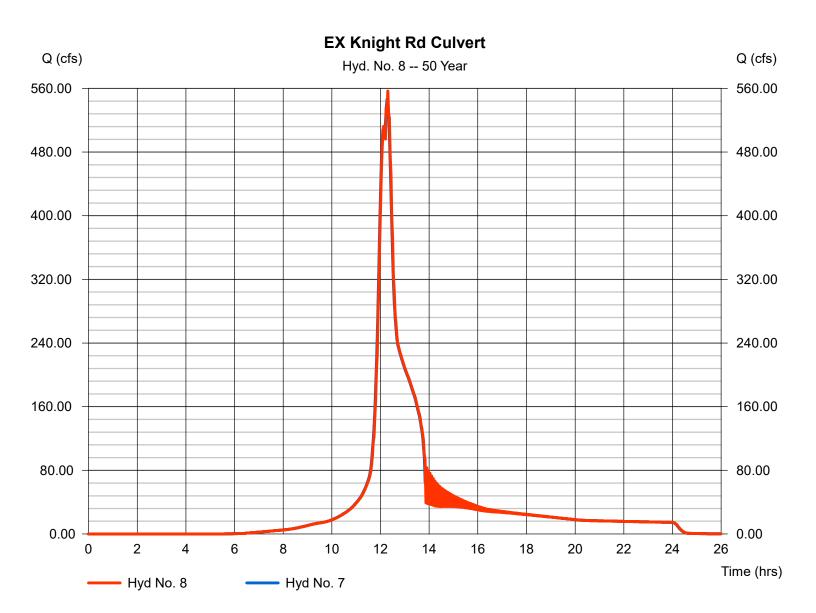


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 7

Total EX to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 5	46.15 cfs
Storm frequency	= 50 yrs	Time to peak = 1	2.27 hrs
Time interval	= 2 min	Hyd. volume = 3	,360,269 cuft
Inflow hyds.	= 2, 5, 6	Contrib. drain. area = 6	8.530 ac

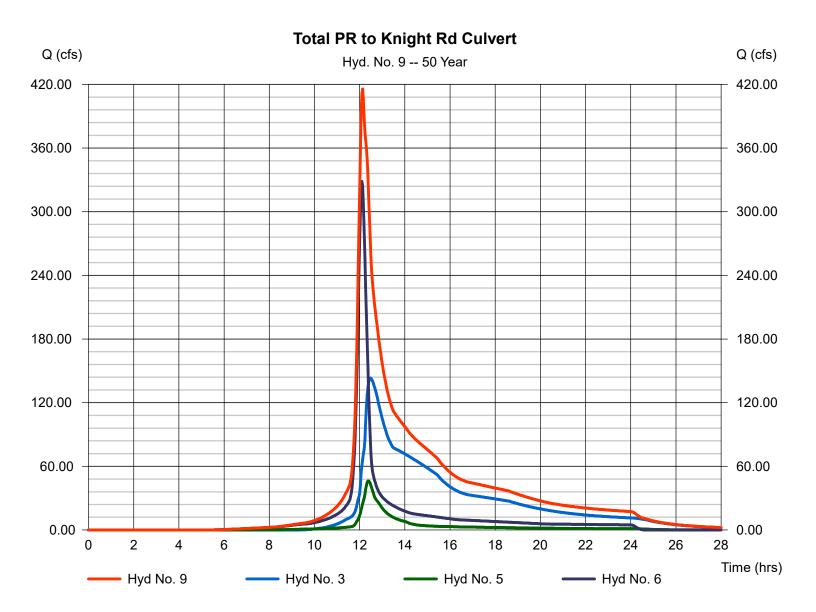

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 8

EX Knight Rd Culvert

Hydrograph type Storm frequency	= Reach = 50 yrs	Peak discharge Time to peak	= 556.53 cfs = 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 3,360,231 cuft
Inflow hyd. No.	= 7 - Total EX to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 32.59 ft/s	Routing coeff.	= 1.9645

Modified Att-Kin routing method used.

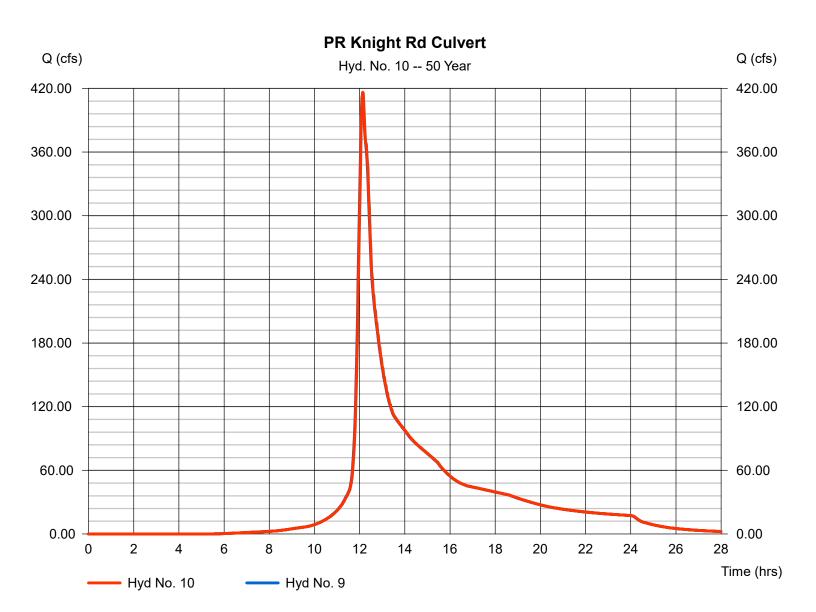


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 9

Total PR to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 415.63 cfs
Storm frequency	= 50 yrs	Time to peak = 12.13 hrs
Time interval	= 2 min	Hyd. volume = $3,330,410$ cuft
Inflow hyds.	= 3, 5, 6	Contrib. drain. area = 68.530 ac

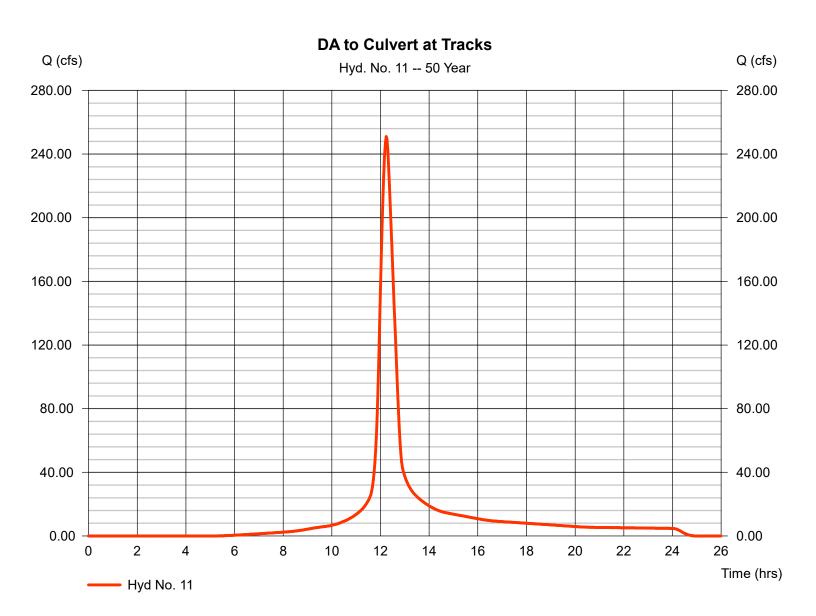

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 10

PR Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 416.20 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 3,330,279 cuft
Inflow hyd. No.	= 9 - Total PR to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 29.56 ft/s	Routing coeff.	= 1.9609

Modified Att-Kin routing method used.

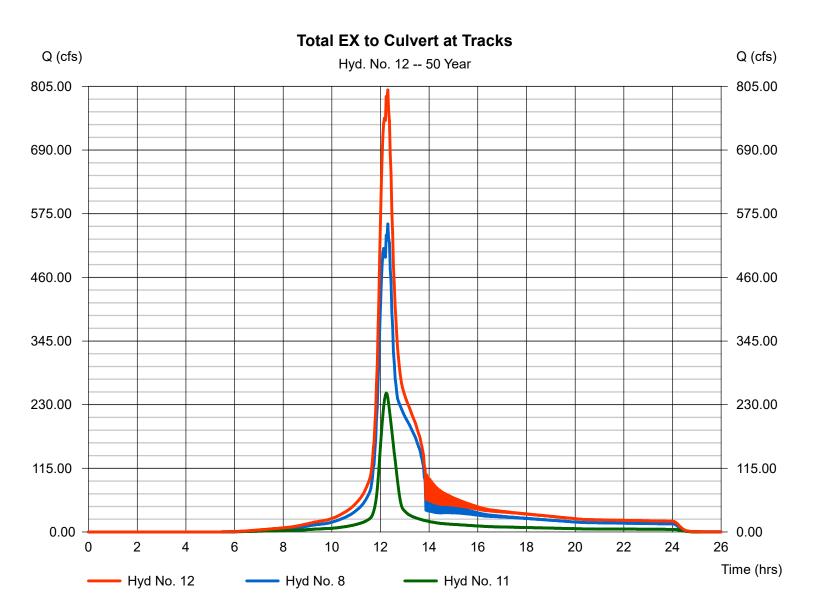


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 11

DA to Culvert at Tracks

Hydrograph type	= SCS Runoff	Peak discharge	= 250.96 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 1,144,656 cuft
Drainage area	= 68.990 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.30 min
Total precip.	= 6.57 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

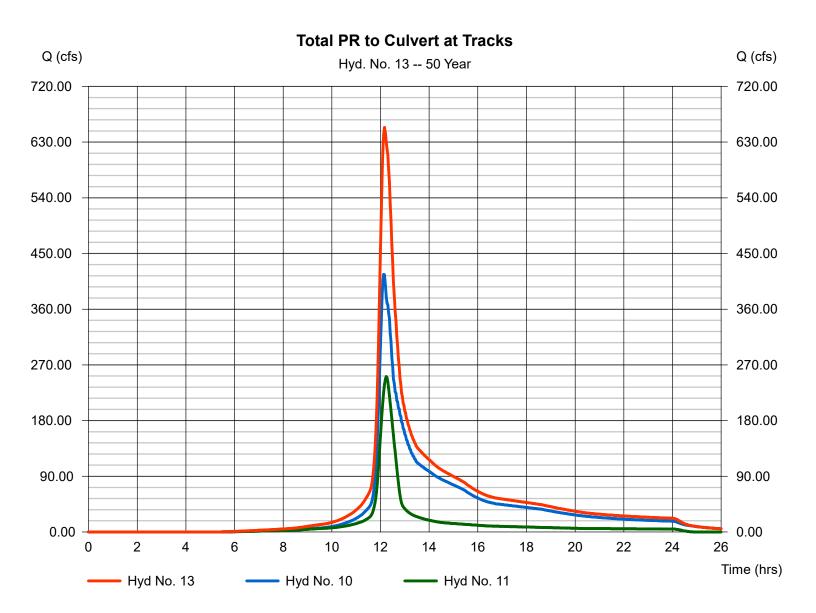


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 12

Total EX to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 798.74 cfs
Storm frequency	= 50 yrs	Time to peak = 12.30 hrs
Time interval	= 2 min	Hyd. volume = $4,504,890$ cuft
Inflow hyds.	= 8, 11	Contrib. drain. area = 68.990 ac



Hydraflow Hydrographs by Intelisolve v9.22

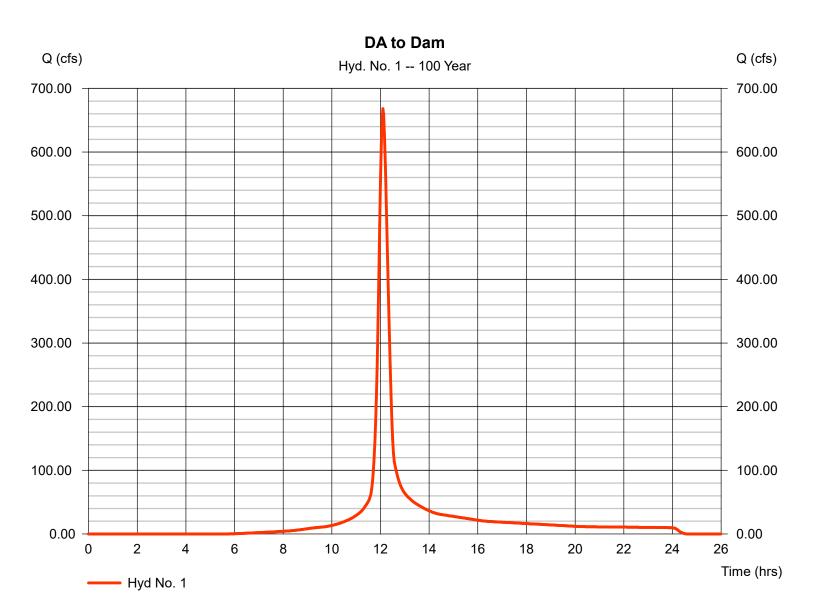
Hyd. No. 13

Total PR to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 653.57 cfs
Storm frequency	= 50 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = $4,474,937$ cuft
Inflow hyds.	= 10, 11	Contrib. drain. area = 68.990 ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.22

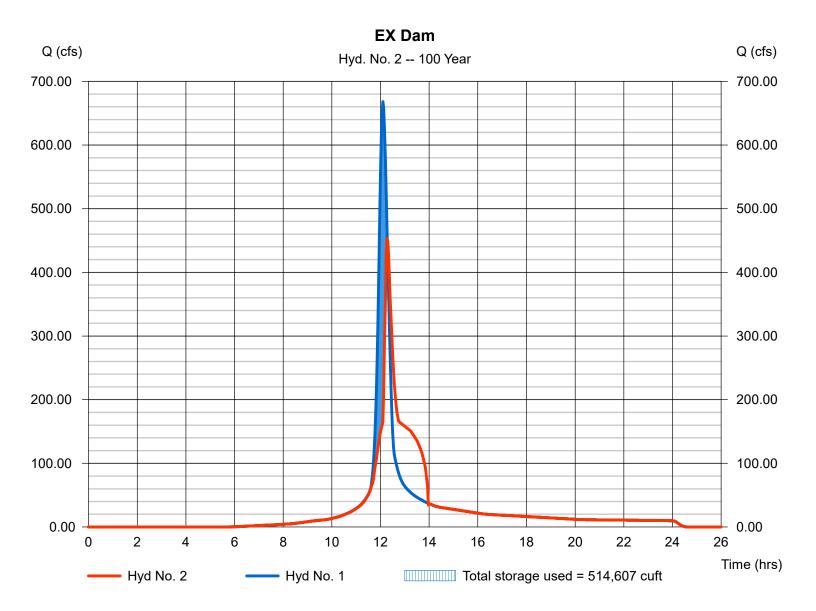

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	668.28	2	726	2,320,737				DA to Dam
2	Reservoir	452.95	2	736	2,320,678	1	261.19	514,607	EX Dam
3	Reservoir	173.73	2	748	2,290,824	1	260.12	1,069,778	PR Dam
4	SCS Runoff	80.79	2	730	325,492				DA to School Basin
5	Reservoir	62.91	2	740	325,484	4	274.36	78,068	EX School Basin
6	SCS Runoff	387.07	2	726	1,354,321				EX DA to Knight Rd Culvert
7	Combine	779.64	2	736	4,000,486	2, 5, 6			Total EX to Knight Rd Culvert
8	Reach	803.93	2	736	4,000,450	7			EX Knight Rd Culvert
9	Combine	504.36	2	732	3,970,628	3, 5, 6,			Total PR to Knight Rd Culvert
10	Reach	509.12	2	732	3,970,496	9			PR Knight Rd Culvert
11	SCS Runoff	295.14	2	734	1,352,631				DA to Culvert at Tracks
12	Combine	1096.75	2	736	5,353,085	8, 11			Total EX to Culvert at Tracks
13	Combine	799.96	2	732	5,323,131	10, 11,			Total PR to Culvert at Tracks
Broo	okside Ave Fl	ood Stud	y - Dam	.gpw	Return P	eriod: 100	Year	Monday, Ma	ar 13, 2023

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 1

DA to Dam

Hydrograph type	= SCS Runoff	Peak discharge	= 668.28 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 2,320,737 cuft
Drainage area	= 125.440 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.90 min
Total precip.	= 7.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

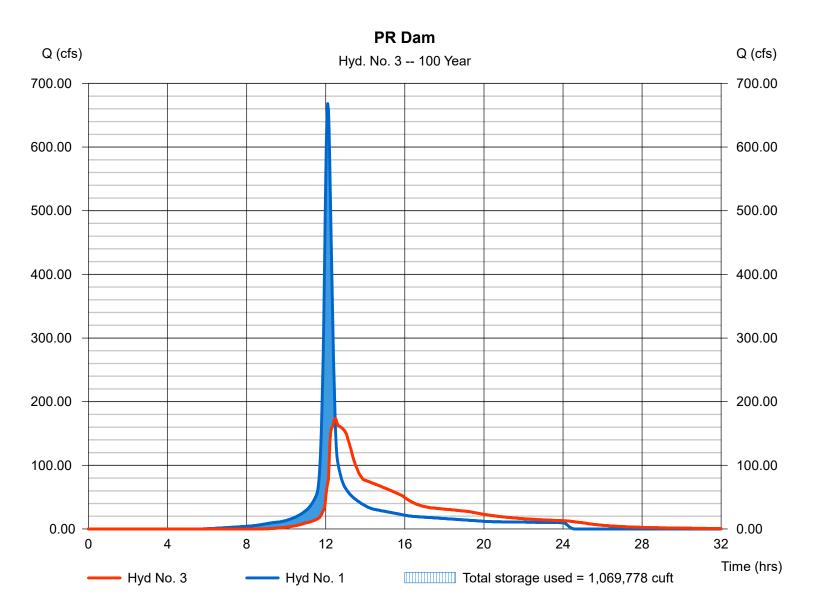

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 2

EX Dam

Hydrograph type	= Reservoir	Peak discharge	= 452.95 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 2,320,678 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 261.19 ft
Reservoir name	= EX Dam	Max. Storage	= 514,607 cuft
		_	

Storage Indication method used.

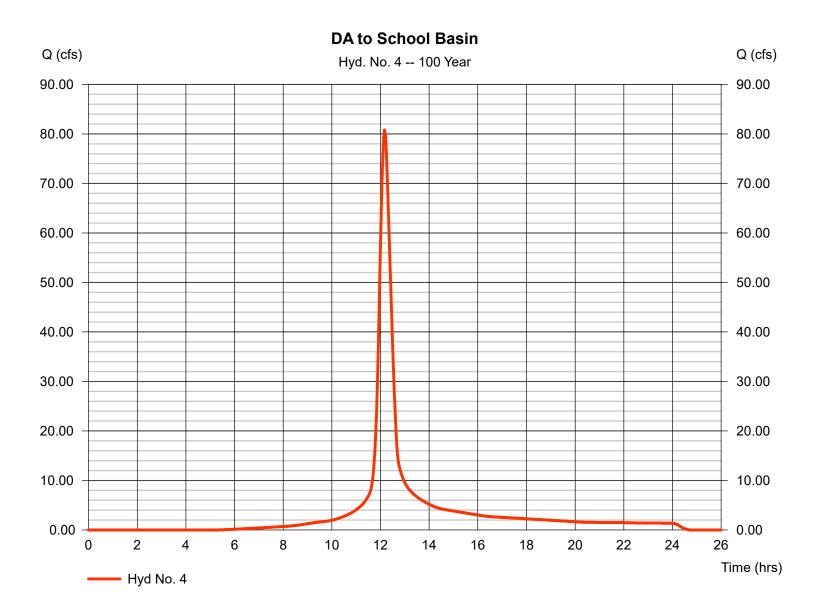

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 3

PR Dam

= Reservoir	Peak discharge	= 173.73 cfs
= 100 yrs	Time to peak	= 12.47 hrs
= 2 min	Hyd. volume	= 2,290,824 cuft
= 1 - DA to Dam	Max. Elevation	= 260.12 ft
= PR Dam - OCS and Grading	Max. Storage	= 1,069,778 cuft
	= 100 yrs = 2 min = 1 - DA to Dam	= 100 yrsTime to peak= 2 minHyd. volume= 1 - DA to DamMax. Elevation

Storage Indication method used.

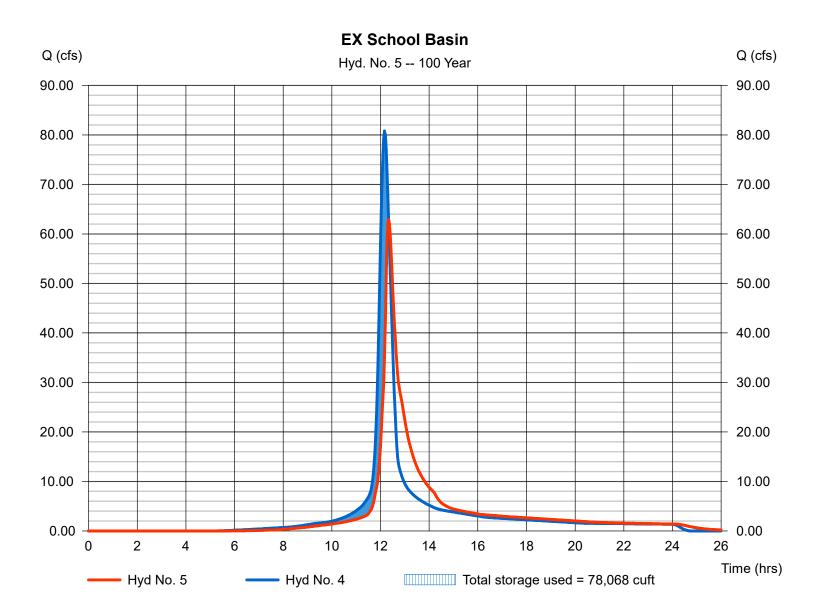


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 4

DA to School Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 80.79 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 325,492 cuft
Drainage area	= 17.130 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.50 min
Total precip.	= 7.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

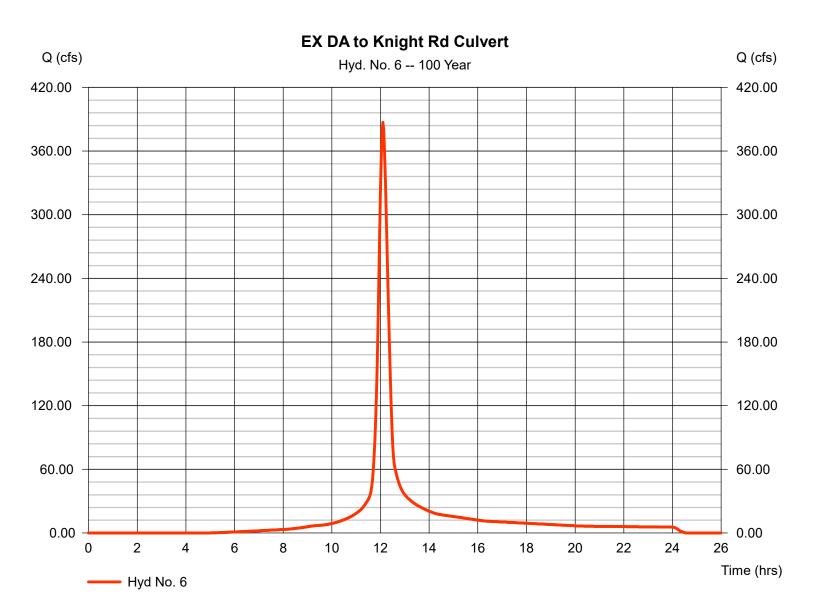

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 5

EX School Basin

Hydrograph type	= Reservoir	Peak discharge	= 62.91 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 325,484 cuft
Inflow hyd. No.	= 4 - DA to School Basin	Max. Elevation	= 274.36 ft
Reservoir name	= EX School Basin	Max. Storage	= 78,068 cuft

Storage Indication method used.

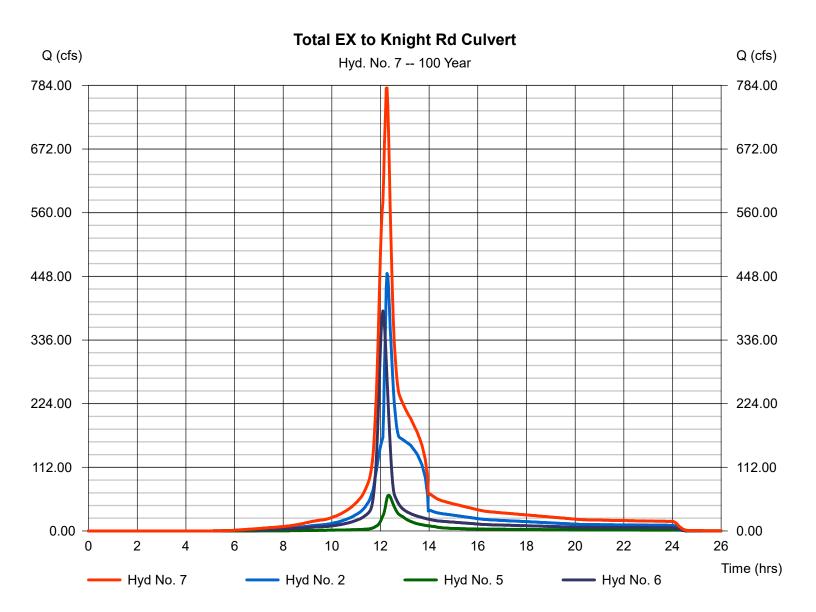


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 6

EX DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 387.07 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 1,354,321 cuft
Drainage area	= 68.530 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 7.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

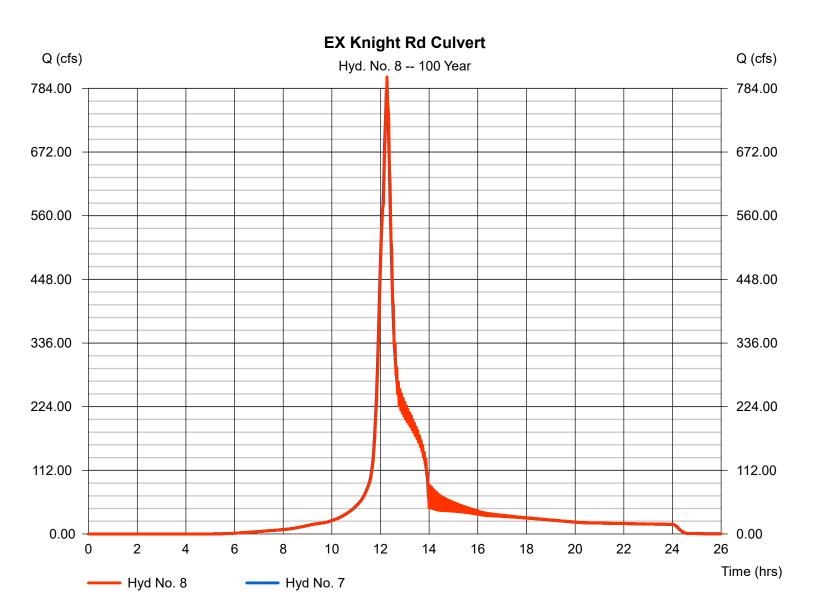


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 7

Total EX to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 779.64 cfs
Storm frequency	= 100 yrs	Time to peak = 12.27 hrs
Time interval	= 2 min	Hyd. volume = $4,000,486$ cuft
Inflow hyds.	= 2, 5, 6	Contrib. drain. area = 68.530 ac
Inflow hyds.	= 2, 5, 6	Contrib. drain. area = 68.530 ac

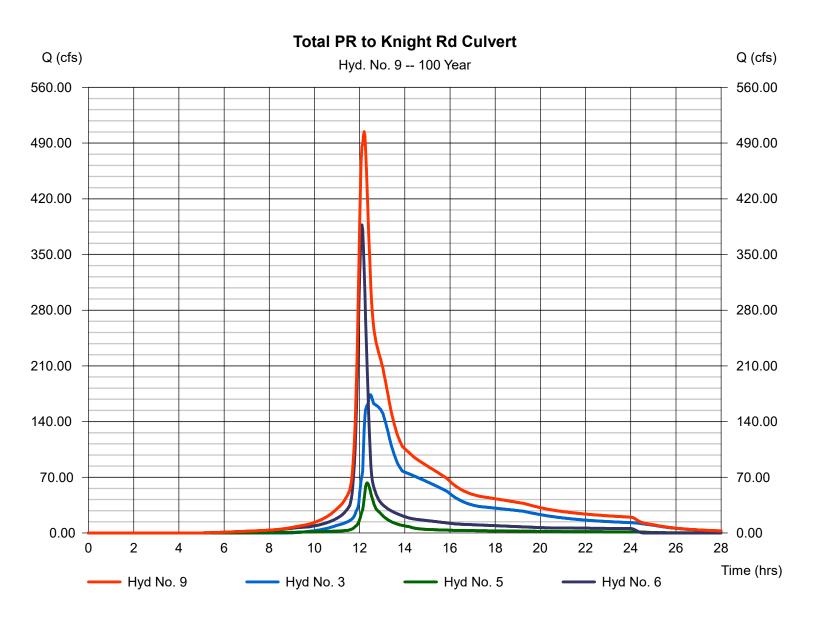

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 8

EX Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 803.93 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 4,000,450 cuft
Inflow hyd. No.	= 7 - Total EX to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 37.01 ft/s	Routing coeff.	= 1.9687
-		-	

Modified Att-Kin routing method used.

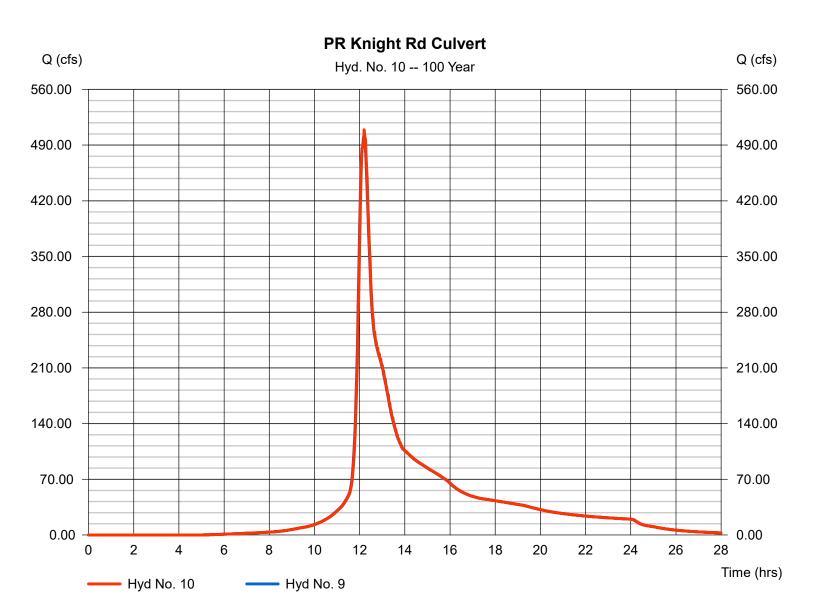


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 9

Total PR to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 504.36 cfs
Storm frequency	= 100 yrs	Time to peak = 12.20 hrs
Time interval	= 2 min	Hyd. volume = 3,970,628 cuft
Inflow hyds.	= 3, 5, 6	Contrib. drain. area = 68.530 ac

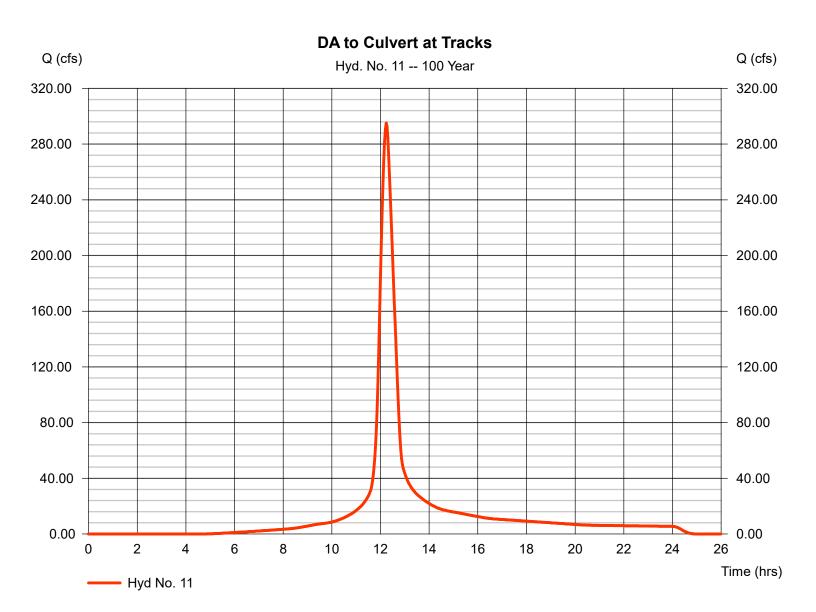

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 10

PR Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 509.12 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.20 hrs
Time interval	$= 2 \min$	Hyd. volume	= 3,970,496 cuft
Inflow hyd. No.	= 9 - Total PR to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 31.68 ft/s	Routing coeff.	= 1.9635

Modified Att-Kin routing method used.

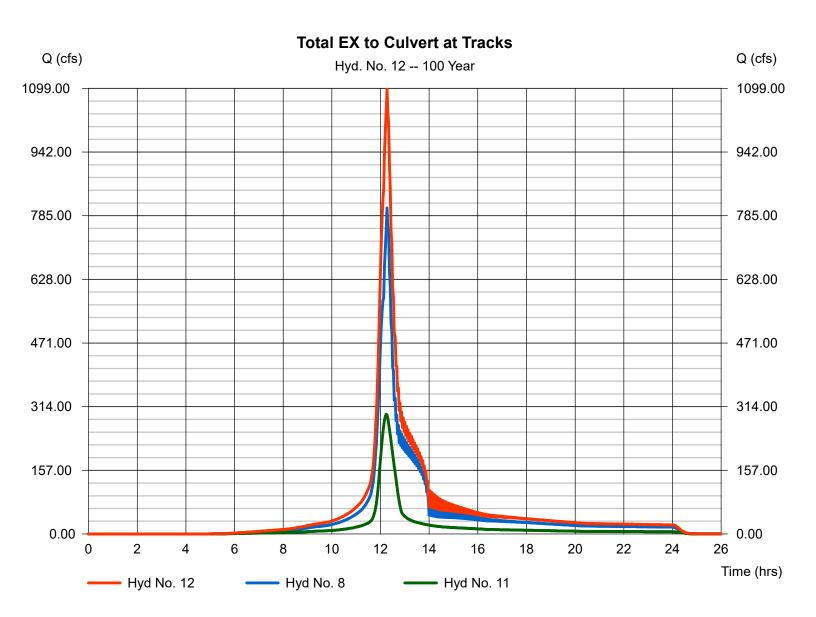


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 11

DA to Culvert at Tracks

Hydrograph type	= SCS Runoff	Peak discharge	= 295.14 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 1,352,631 cuft
Drainage area	= 68.990 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.30 min
Total precip.	= 7.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

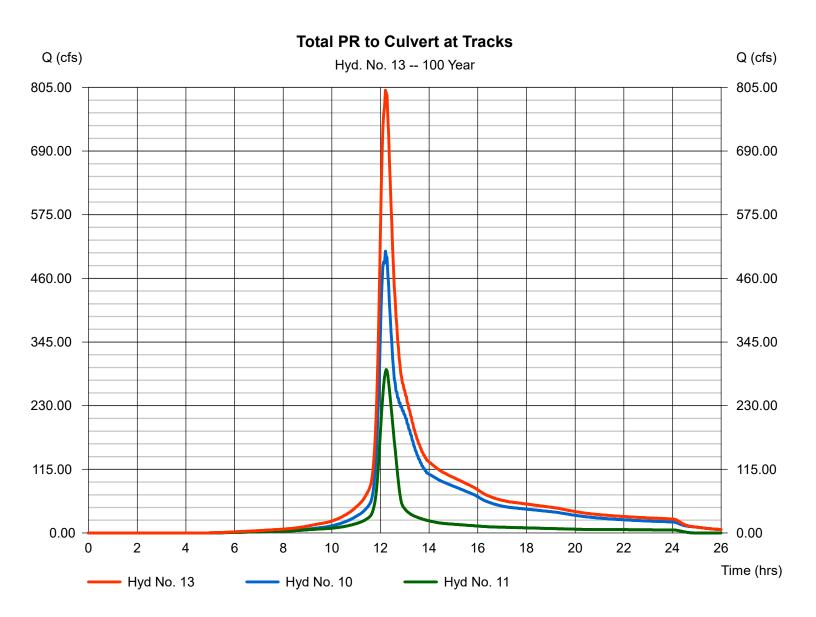


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 12

Total EX to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 1096.75 cfs
Storm frequency	= 100 yrs	Time to peak = 12.27 hrs
Time interval	= 2 min	Hyd. volume = $5,353,085$ cuft
Inflow hyds.	= 8, 11	Contrib. drain. area = 68.990 ac



Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 13

Total PR to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 799.96 cfs
Storm frequency	= 100 yrs	Time to peak = 12.20 hrs
Time interval	= 2 min	Hyd. volume = 5,323,131 cuft
Inflow hyds.	= 10, 11	Contrib. drain. area = 68.990 ac

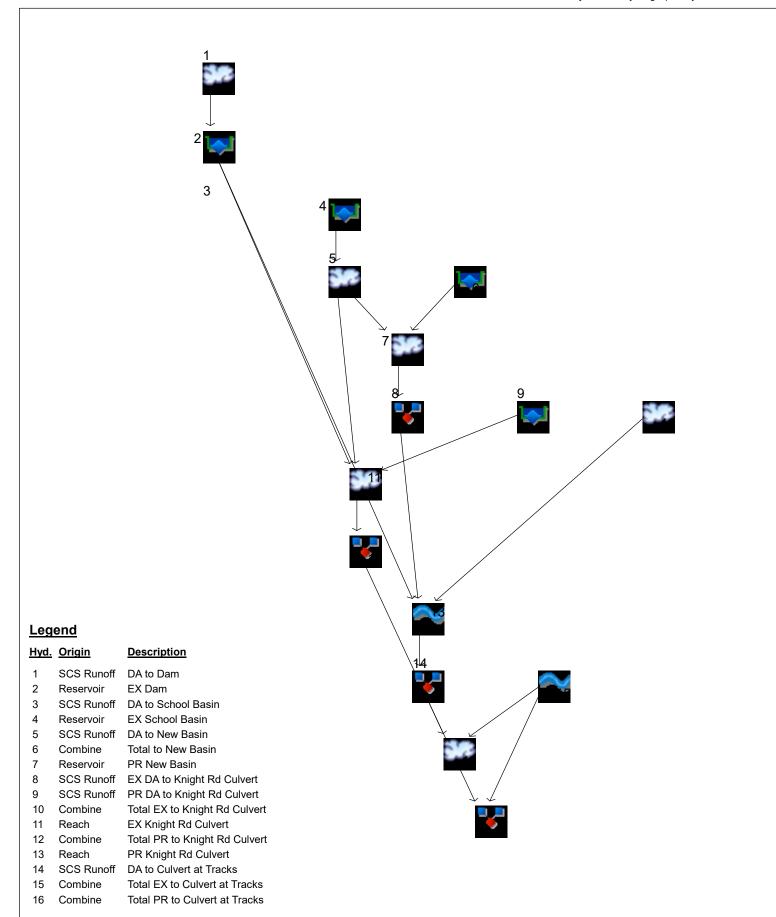
Hydraflow Rainfall Report

Hydraflow Hydrographs by Intelisolve v9.22

Return Intensity-Duration-Frequency Equation Coefficients (FHA) Period в D Е (Yrs) (N/A) 1 37.0466 9.8000 0.9093 _____ 2 16.9729 3.2000 0.6105 0.0000 0.0000 3 0.0000 _____ 5 25.3184 5.4000 0.6606 -----54.7383 10.8000 0.8016 10 25 92.8341 14.6000 0.8787 ------50 41.8042 8.4000 0.6573 _____ 100 116.5471 18.3000 0.8393 -----

File name: NOAA IDF Lower Gwynedd.IDF

Intensity = B / (Tc + D)^E


Return Period	Intensity Values (in/hr)											
(Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	3.20	2.45	2.00	1.69	1.47	1.30	1.17	1.06	0.97	0.90	0.83	0.78
2	4.70	3.51	2.89	2.49	2.21	2.00	1.84	1.70	1.59	1.50	1.42	1.35
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	5.39	4.16	3.45	2.99	2.65	2.40	2.20	2.04	1.90	1.79	1.69	1.60
10	5.99	4.81	4.04	3.51	3.11	2.80	2.55	2.35	2.18	2.03	1.91	1.80
25	6.80	5.57	4.73	4.12	3.66	3.30	3.01	2.76	2.56	2.38	2.23	2.10
50	7.59	6.16	5.26	4.63	4.16	3.80	3.51	3.26	3.06	2.88	2.73	2.60
100	8.30	7.05	6.15	5.47	4.93	4.50	4.14	3.84	3.59	3.36	3.17	3.00

Tc = time in minutes. Values may exceed 60.

		Painfall Procinitation Table (in)							
-	Rainfall Precipitation Table (in)								
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	
SCS 24-hour	2.70	3.25	0.00	4.07	4.76	5.74	6.57	7.46	
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Custom	0.00	0.00	1.20	0.00	0.00	0.00	0.00	0.00	

Precip. file name: NOAA Precipitation Lower Gwynedd.pcp

Watershed Model Schematic

Hydrograph Return Period Recap

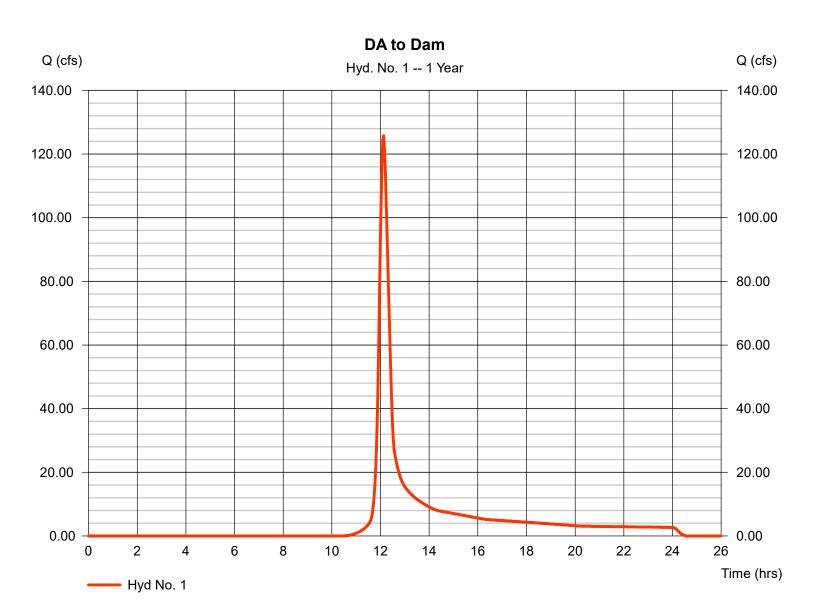
Hydraflow Hydrographs by Intelisolve v9.22

2

Hyd.	Hydrograph	Inflow				Peak Out	flow (cfs)				Hydrograph
No.	type (origin)	Hyd(s)	1-Yr	2-Yr	3-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	description
1	SCS Runoff		125.75	180.90		269.70	348.18	462.79	561.52	668.28	DA to Dam
2	Reservoir	1	101.31	122.45		143.57	155.32	188.75	303.95	452.95	EX Dam
3	SCS Runoff		16.46	23.17		33.84	43.17	56.70	68.29	80.79	DA to School Basin
4	Reservoir	3	8.431	11.97		18.44	24.40	33.06	46.22	62.91	EX School Basin
5	SCS Runoff		26.95	37.18		53.10	66.84	86.61	103.47	121.57	DA to New Basin
6	Combine	4, 5	29.78	42.87		62.94	79.96	105.18	126.96	149.16	Total to New Basin
7	Reservoir	6	1.422	1.718		2.084	2.348	2.670	7.414	20.67	PR New Basin
8	SCS Runoff		82.53	114.92		165.88	210.08	273.90	328.43	387.07	EX DA to Knight Rd Culvert
9	SCS Runoff		53.82	75.67		110.43	140.73	184.64	222.25	262.76	PR DA to Knight Rd Culvert
10	Combine	2, 4, 8,	182.16	234.98		308.22	365.25	444.90	546.15	779.64	Total EX to Knight Rd Culvert
11	Reach	10	185.01	238.11		311.00	368.57	445.40	556.53	803.93	EX Knight Rd Culvert
12	Combine	2, 7, 9,	151.55	191.14		244.14	284.21	338.77	437.54	637.99	Total PR to Knight Rd Culvert
13	Reach	12	154.19	194.00		246.66	287.67	339.16	448.83	659.54	PR Knight Rd Culvert
14	SCS Runoff		64.98	89.60		128.23	161.67	209.86	250.96	295.14	DA to Culvert at Tracks
15	Combine	11, 14	244.99	321.68		431.54	518.45	643.34	798.74	1096.75	Total EX to Culvert at Tracks
16	Combine	13, 14,	215.00	277.57		367.20	440.81	537.31	691.03	952.36	Total PR to Culvert at Tracks
Proj	j. file: Brooks	ide Ave F	lood Stu	dy - Nev	v Basin.	gpw			Fri	day, Nov	18, 2022

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.22


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	125.75	2	728	451,492				DA to Dam
2	Reservoir	101.31	2	734	451,435	1	252.64	25,632	EX Dam
3	SCS Runoff	16.46	2	732	67,620				DA to School Basin
4	Reservoir	8.431	2	750	67,612	3	272.07	20,387	EX School Basin
5	SCS Runoff	26.95	2	726	94,441				DA to New Basin
6	Combine	29.78	2	728	162,053	4, 5			Total to New Basin
7	Reservoir	1.422	2	1114	160,630	6	252.69	106,791	PR New Basin
8	SCS Runoff	82.53	2	728	290,476				EX DA to Knight Rd Culvert
9	SCS Runoff	53.82	2	728	190,450				PR DA to Knight Rd Culvert
10	Combine	182.16	2	728	809,523	2, 4, 8,			Total EX to Knight Rd Culvert
11	Reach	185.01	2	730	809,488	10			EX Knight Rd Culvert
12	Combine	151.55	2	730	802,515	2, 7, 9,			Total PR to Knight Rd Culvert
13	Reach	154.19	2	730	802,514	12			PR Knight Rd Culvert
14	SCS Runoff	64.98	2	736	299,359				DA to Culvert at Tracks
15	Combine	244.99	2	730	1,108,848	11, 14			Total EX to Culvert at Tracks
16	Combine	215.00	2	734	1,101,873	13, 14,			Total PR to Culvert at Tracks
Bro	okside Ave F	lood Stud	ly - New	Basin.gpv	v Return P	eriod: 1 Ye	ar	Friday, Nov	18, 2022

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 1

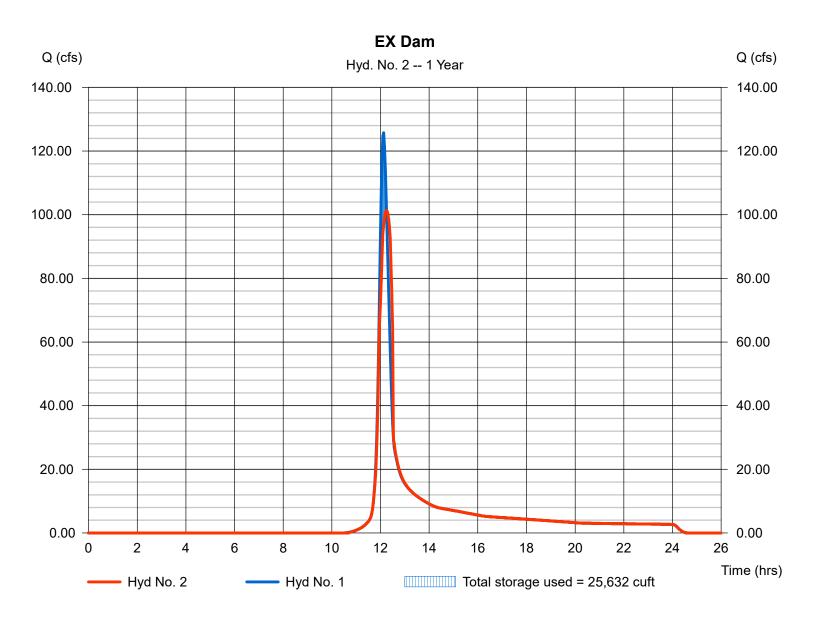
DA to Dam

Hydrograph type	= SCS Runoff	Peak discharge	= 125.75 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 451,492 cuft
Drainage area	= 125.440 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.90 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 1

DA to Dam

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 160.0 = 3.25 = 5.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 9.81	+	0.00	+	0.00	=	9.81
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 150.00 = 4.70 = Unpaved = 3.50		675.00 3.30 Paved 3.69		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.71	+	3.05	+	0.00	=	3.76
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 3.14 = 6.28 = 2.00 = 0.015 = 8.83 = 650.0		30.00 22.60 2.00 0.050 5.10 2470.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 1.23	+	8.08	+	0.00	=	9.31
Total Travel Time, Tc							22.90 min


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 2

EX Dam

Hydrograph type	= Reservoir	Peak discharge	= 101.31 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 451,435 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 252.64 ft
Reservoir name	= EX Dam	Max. Storage	= 25,632 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs by Intelisolve v9.22

Pond No. 1 - EX Dam

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 246.00 ft

Stage / Storage Table

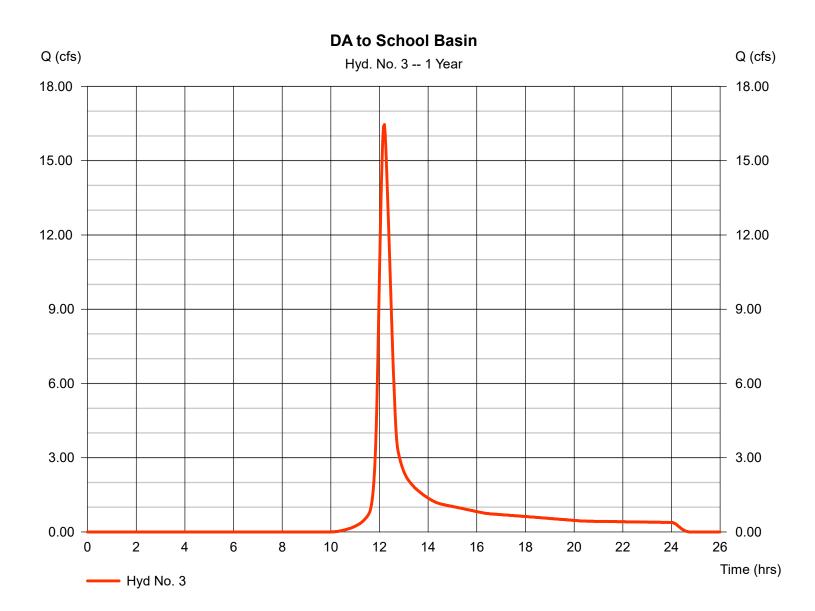
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	246.00	01	0	0
2.00	248.00	143	144	144
4.00	250.00	2,390	2,533	2,677
6.00	252.00	10,496	12,886	15,563
8.00	254.00	21,604	32,100	47,663
10.00	256.00	32,612	54,216	101,879
12.00	258.00	60,893	93,505	195,384
14.00	260.00	104,424	165,317	360,701
16.00	262.00	155,295	259,719	620,420

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 30.00	0.00	0.00	0.00	Crest Len (ft)	= 72.00	175.00	0.00	0.00
Span (in)	= 48.00	0.00	0.00	0.00	Crest El. (ft)	= 260.00	261.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 2.60	2.60	3.33	3.33
Invert El. (ft)	= 246.95	0.00	0.00	0.00	Weir Type	= Broad	Broad		
Length (ft)	= 9.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 5.20	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures


Stage /	Storage /	Discharge ⁻	Table										0 ()
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	246.00	0.00				0.00	0.00					0.000
2.00	144	248.00	14.65 ic				0.00	0.00					14.65
4.00	2,677	250.00	64.60 ic				0.00	0.00					64.60
6.00	15,563	252.00	93.86 ic				0.00	0.00					93.86
8.00	47,663	254.00	115.96 ic				0.00	0.00					115.96
10.00	101,879	256.00	134.48 ic				0.00	0.00					134.48
12.00	195,384	258.00	150.73 ic				0.00	0.00					150.73
14.00	360,701	260.00	165.40 ic				0.00	0.00					165.40
16.00	620,420	262.00	178.87 ic				529.48	455.00					1163.35

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 3

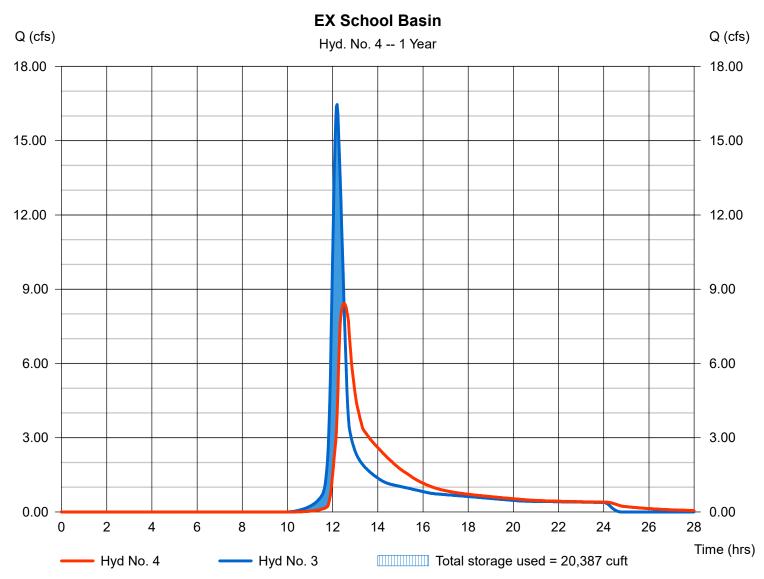
DA to School Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 16.46 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.20 hrs
Time interval	= 2 min	Hyd. volume	= 67,620 cuft
Drainage area	= 17.130 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.50 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 3

DA to School Basin

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 3.25 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 23.41	+	0.00	+	0.00	=	23.41
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 265.00 = 2.30 = Unpaved = 2.45	b	60.00 16.70 Unpave 6.59	d	160.00 1.90 Paved 2.80		
Travel Time (min)	= 1.80	+	0.15	+	0.95	=	2.91
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 0.20 = 1.57 = 1.00 = 0.015 = 2.50 = 285.0		1.23 3.93 2.00 0.015 6.45 115.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 1.90	+	0.30	+	0.00	=	2.20
Total Travel Time, Tc							28.50 min


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 4

EX School Basin

Hydrograph type	= Reservoir	Peak discharge	= 8.431 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.50 hrs
Time interval	= 2 min	Hyd. volume	= 67,612 cuft
Inflow hyd. No.	= 3 - DA to School Basin	Max. Elevation	= 272.07 ft
Reservoir name	= EX School Basin	Max. Storage	= 20,387 cuft

Storage Indication method used.

10

Pond Report

Hydraflow Hydrographs by Intelisolve v9.22

Pond No. 2 - EX School Basin

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 270.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	270.00	441	0	0
2.00	272.00	18,356	18,797	18,797
4.00	274.00	28,936	47,292	66,089
5.00	275.00	37,052	32,994	99,083

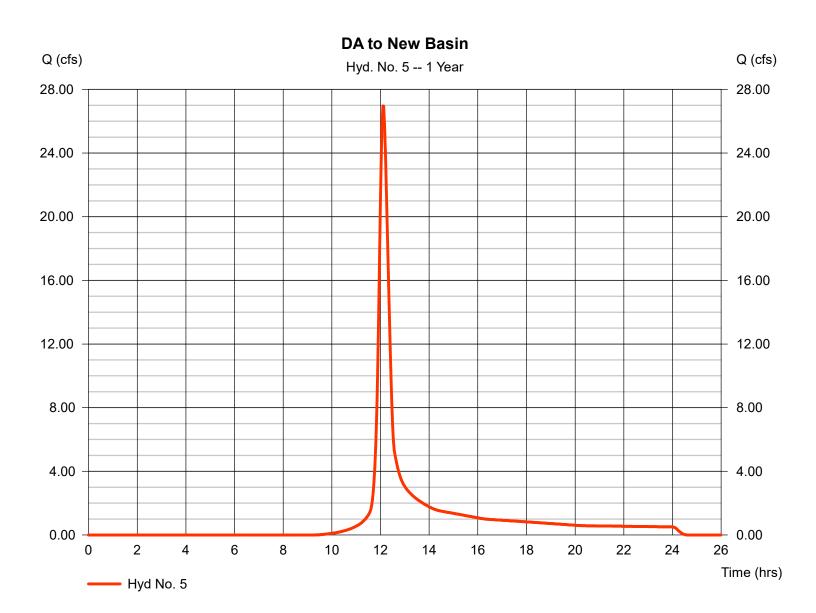
Weir Structures

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 36.00	6.00	24.00	0.00	Crest Len (ft)	= 16.00	25.00	0.00	0.00
Span (in)	= 36.00	6.00	26.00	0.00	Crest El. (ft)	= 273.75	274.00	0.00	0.00
No. Barrels	= 1	4	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 270.00	270.00	271.33	0.00	Weir Type	= Rect	Ciplti		
Length (ft)	= 330.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.50	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

•	•											
Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0	270.00	0.00	0.00	0.00		0.00	0.00					0.000
18,797	272.00	7.75 ic	3.70 ic	4.05 ic		0.00	0.00					7.748
66,089	274.00	35.83 ic	4.48 ic	24.69 ic		6.66	0.00					35.83
99,083	275.00	53.53 oc	1.70 ic	9.38 ic		42.45 s	83.25					136.77
	Storage cuft 0 18,797 66,089	Storage cuft Elevation ft 0 270.00 18,797 272.00 66,089 274.00	Storage cuft Elevation ft Clv A cfs 0 270.00 0.00 18,797 272.00 7.75 ic 66,089 274.00 35.83 ic	Storage cuft Elevation ft Clv A cfs Clv B cfs 0 270.00 0.00 0.00 18,797 272.00 7.75 ic 3.70 ic 66,089 274.00 35.83 ic 4.48 ic	Storage cuft Elevation ft Clv A cfs Clv B cfs Clv B cfs Clv C cfs 0 270.00 0.00 0.00 0.00 0.00 18,797 272.00 7.75 ic 3.70 ic 4.05 ic 66,089 274.00 35.83 ic 4.48 ic 24.69 ic	Storage cuft Elevation ft Clv A cfs Clv B cfs Clv C cfs PrfRsr cfs 0 270.00 0.00 0.00 0.00 18,797 272.00 7.75 ic 3.70 ic 4.05 ic 66,089 274.00 35.83 ic 4.48 ic 24.69 ic	Storage cuft Elevation ft Clv A cfs Clv B cfs Clv C cfs PrfRsr cfs Wr A cfs 0 270.00 0.00 0.00 0.00 0.00 18,797 272.00 7.75 ic 3.70 ic 4.05 ic 0.00 66,089 274.00 35.83 ic 4.48 ic 24.69 ic 6.66	Storage cuft Elevation ft Clv A cfs Clv B cfs Clv C cfs PrfRsr cfs Wr A cfs Wr B cfs 0 270.00 0.00 0.00 0.00 0.00 0.	Storage cuft Elevation ft Clv A cfs Clv B cfs Clv C cfs PrfRsr cfs Wr A cfs Wr B cfs Wr C cfs 0 270.00 0.00 0.00 0.00 <t< td=""><td>Storage cuft Elevation ft Clv A cfs Clv B cfs Clv C cfs PrfRsr cfs Wr A cfs Wr B cfs Wr C cfs Wr D cfs 0 270.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 </td><td>Storage cuft Elevation ft Clv A cfs Clv B cfs Clv C cfs PrfRsr cfs Wr A cfs Wr B cfs Wr C cfs Wr D cfs cfs<td>Storage cuft Elevation ft Clv A cfs Clv B cfs Clv C cfs PrfRsr cfs Wr A cfs Wr B cfs Wr C cfs Wr D cfs Exfil User cfs 0 270.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 </td></td></t<>	Storage cuft Elevation ft Clv A cfs Clv B cfs Clv C cfs PrfRsr cfs Wr A cfs Wr B cfs Wr C cfs Wr D cfs 0 270.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Storage cuft Elevation ft Clv A cfs Clv B cfs Clv C cfs PrfRsr cfs Wr A cfs Wr B cfs Wr C cfs Wr D cfs cfs <td>Storage cuft Elevation ft Clv A cfs Clv B cfs Clv C cfs PrfRsr cfs Wr A cfs Wr B cfs Wr C cfs Wr D cfs Exfil User cfs 0 270.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 </td>	Storage cuft Elevation ft Clv A cfs Clv B cfs Clv C cfs PrfRsr cfs Wr A cfs Wr B cfs Wr C cfs Wr D cfs Exfil User cfs 0 270.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00


11

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 5

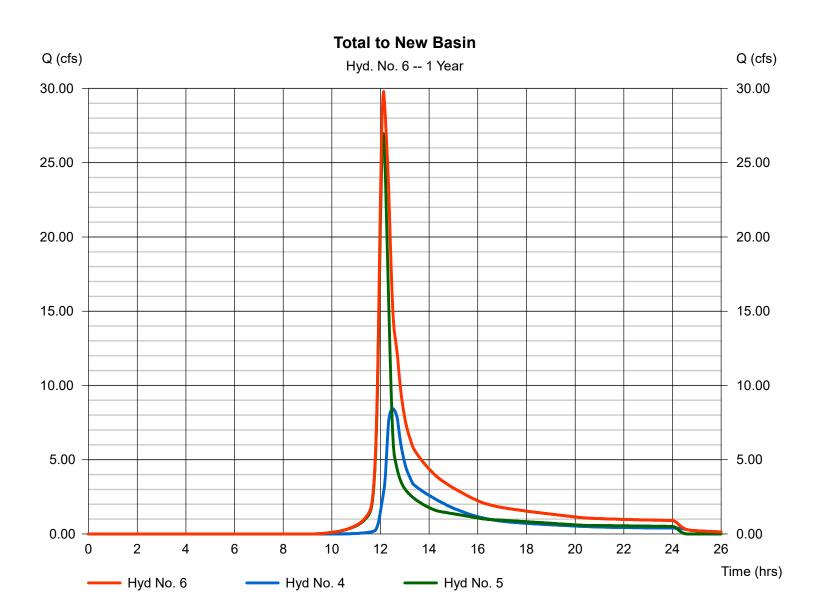
DA to New Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 26.95 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 94,441 cuft
Drainage area	= 21.140 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 20.20 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 5

DA to New Basin

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>	
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 110.0 = 3.25 = 1.80		0.011 110.0 3.25 0.50		0.011 0.0 0.00 0.00			
Travel Time (min)	= 10.94	+	2.26	+	0.00	=	13.20	
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 740.00 = 1.50 = Paved = 2.49		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00			
Travel Time (min)	= 4.95	+	0.00	+	0.00	=	4.95	
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 1.77 = 4.71 = 2.30 = 0.015 = 7.82 = 310.0		7.07 9.42 3.30 0.015 14.89 965.0		60.00 35.60 2.00 0.050 5.98 100.0			
Travel Time (min)	= 0.66	+	1.08	+	0.28	=	2.02	
Total Travel Time, Tc 2								

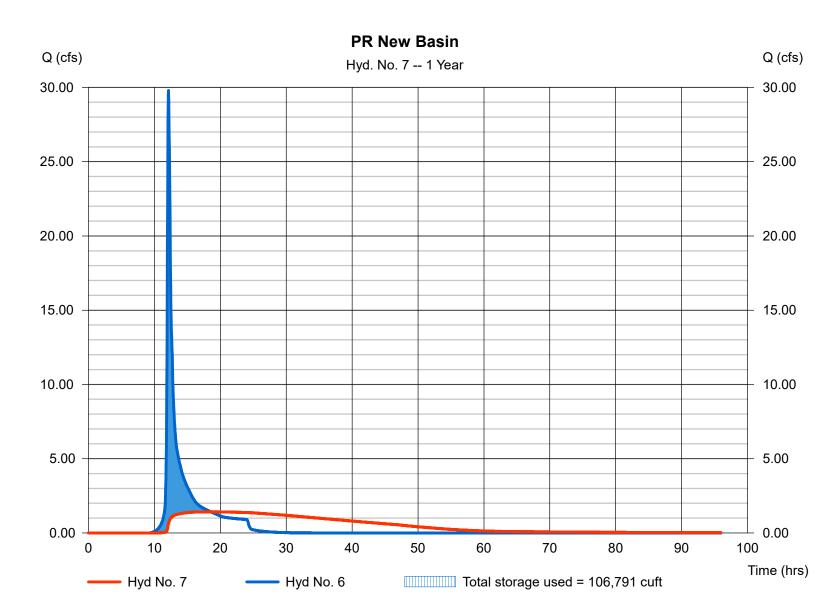

Hydraflow Hydrographs by Intelisolve v9.22

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 6

Total to New Basin

Hydrograph type =	- Combine	Peak discharge	= 29.78 cfs
Storm frequency =	= 1 yrs	Time to peak	= 12.13 hrs
Time interval =	= 2 min	Hyd. volume	= 162,053 cuft
Inflow hyds.	= 4, 5	Contrib. drain. area	= 21.140 ac


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 7

PR New Basin

Hydrograph type	= Reservoir	Peak discharge	= 1.422 cfs
Storm frequency	= 1 yrs	Time to peak	= 18.57 hrs
Time interval	= 2 min	Hyd. volume	= 160,630 cuft
Inflow hyd. No.	= 6 - Total to New Basin	Max. Elevation	= 252.69 ft
Reservoir name	= PR New Basin	Max. Storage	= 106,791 cuft
Inflow hyd. No.	= 6 - Total to New Basin	Max. Elevation	= 252.69 ft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs by Intelisolve v9.22

Pond No. 3 - PR New Basin

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 250.00 ft

Stage / Storage Table

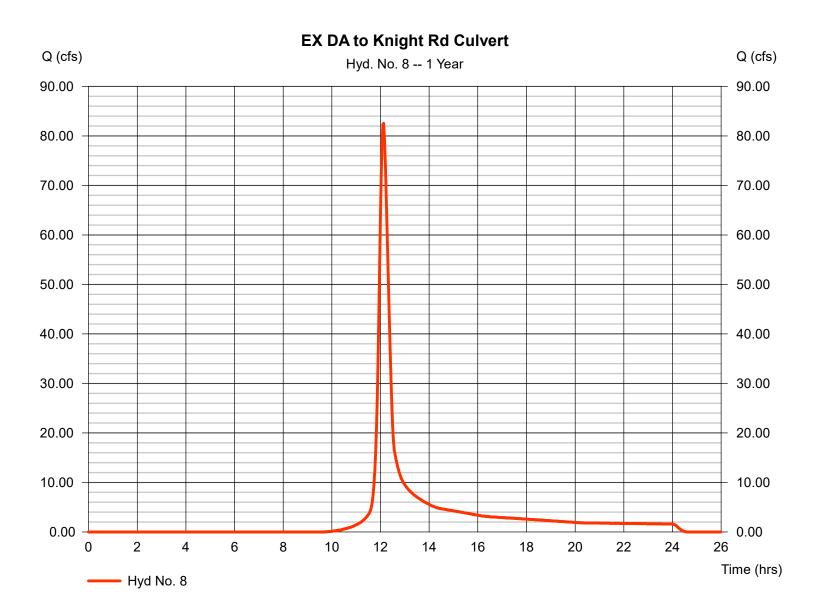
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	250.00	35,786	0	0
2.00	252.00	40,829	76,615	76,615
4.00	254.00	46,204	87,033	163,648
6.00	256.00	51,945	98,149	261,797
8.00	258.00	58,059	110,004	371,801
10.00	260.00	64,562	122,621	494,422
12.00	262.00	72,730	137,292	631,714

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 36.00	6.00	Inactive	0.00	Crest Len (ft)	= 16.00	100.00	0.00	0.00
Span (in)	= 36.00	6.00	36.00	0.00	Crest El. (ft)	= 259.00	260.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 250.00	250.00	252.00	0.00	Weir Type	= Rect	Ciplti		
Length (ft)	= 90.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.50	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures


Stage /	Stage / Storage / Discharge Table												
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	250.00	0.00	0.00	0.00		0.00	0.00					0.000
2.00	76,615	252.00	1.22 ic	1.20 ic	0.00		0.00	0.00					1.199
4.00	163,648	254.00	1.77 ic	1.77 ic	0.00		0.00	0.00					1.774
6.00	261,797	256.00	2.30 ic	2.21 ic	0.00		0.00	0.00					2.208
8.00	371,801	258.00	2.61 ic	2.57 ic	0.00		0.00	0.00					2.575
10.00	494,422	260.00	55.48 oc	2.20 ic	0.00		53.28	0.00					55.48
12.00	631,714	262.00	109.32 ic	0.40 ic	0.00		108.92 s	941.87					1051.19

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 8

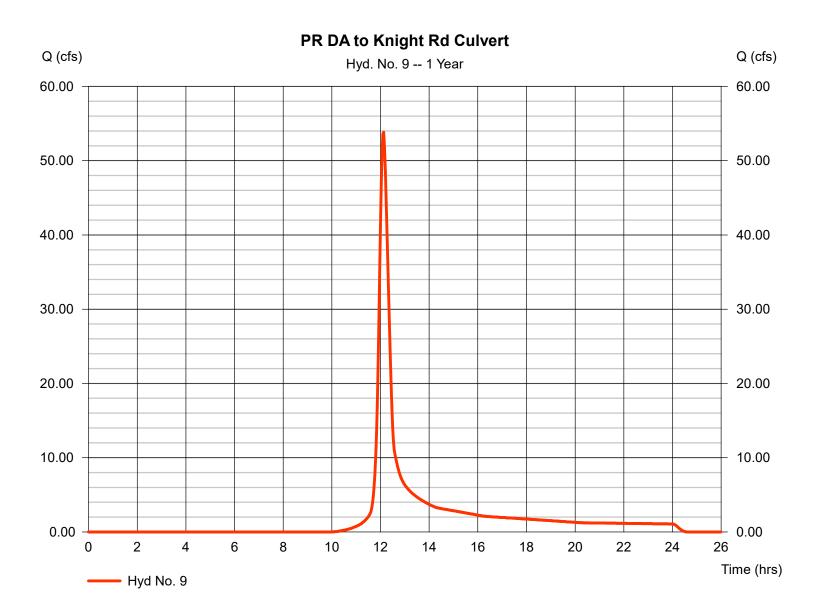
EX DA to Knight Rd Culvert

uft
l

Hyd. No. 8

EX DA to Knight Rd Culvert

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>	
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 255.0 = 3.25 = 2.70		0.011 0.0 3.25 0.00		0.011 0.0 0.00 0.00			
Travel Time (min)	= 18.23	+	0.00	+	0.00	=	18.23	
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 30.00 = 1.50 = Paved = 2.49		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00			
Travel Time (min)	= 0.20	+	0.00	+	0.00	=	0.20	
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 1.77 = 4.71 = 1.70 = 0.015 = 6.72 = 600.0		3.14 6.28 1.50 0.015 7.65 875.0		7.07 9.42 1.90 0.015 11.30 1025.0			
Travel Time (min)	= 1.49	+	1.91	+	1.51	=	4.91	
Total Travel Time, Tc								


Hydraflow Hydrographs by Intelisolve v9.22

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 9

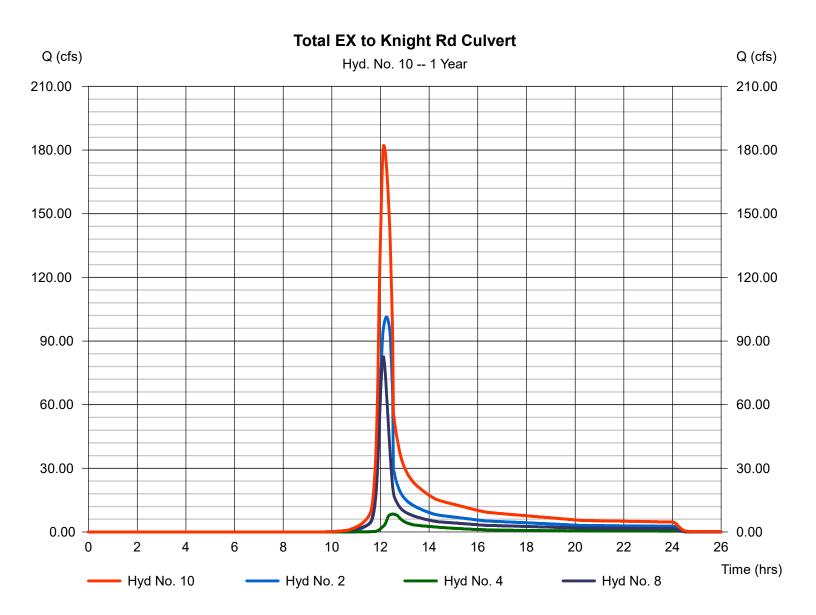
PR DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 53.82 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 190,450 cuft
Drainage area	= 47.400 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

19

PR DA to Knight Rd Culvert

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 255.0 = 3.25 = 2.70		0.011 0.0 3.25 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 18.23	+	0.00	+	0.00	=	18.23
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 30.00 = 1.50 = Paved = 2.49		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.20	+	0.00	+	0.00	=	0.20
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 1.77 = 4.71 = 1.70 = 0.015 = 6.72 = 600.0		3.14 6.28 1.50 0.015 7.65 875.0		7.07 9.42 1.90 0.015 11.30 1025.0		
Travel Time (min)	= 1.49	+	1.91	+	1.51	=	4.91
Total Travel Time, Tc							23.30 min


Hydraflow Hydrographs by Intelisolve v9.22

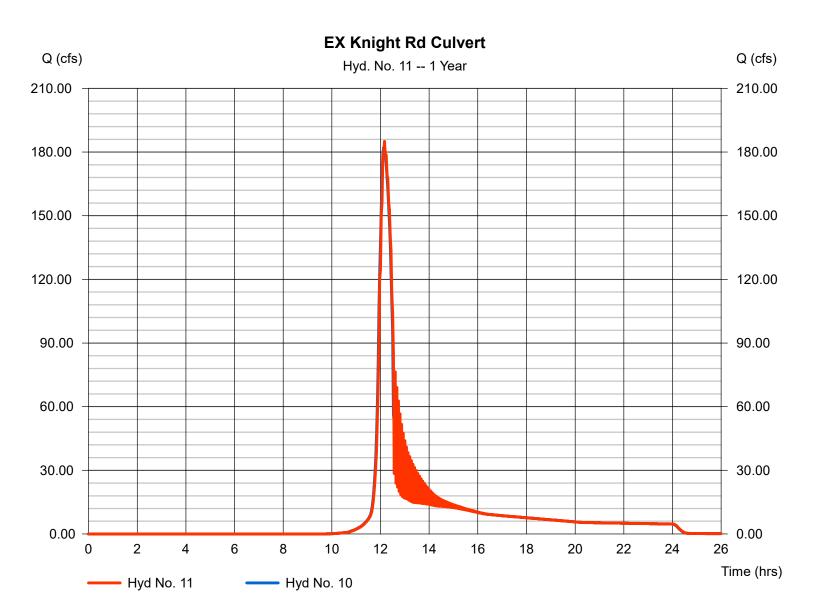
Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 10

Total EX to Knight Rd Culvert

Combine	Peak discharge	= 182.16 cfs
l yrs	Time to peak	= 12.13 hrs
2 min	Hyd. volume	= 809,523 cuft
2, 4, 8	Contrib. drain. area	= 68.530 ac
	Combine 1 yrs 2 min 2, 4, 8	1 yrs Time to peak 2 min Hyd. volume

21

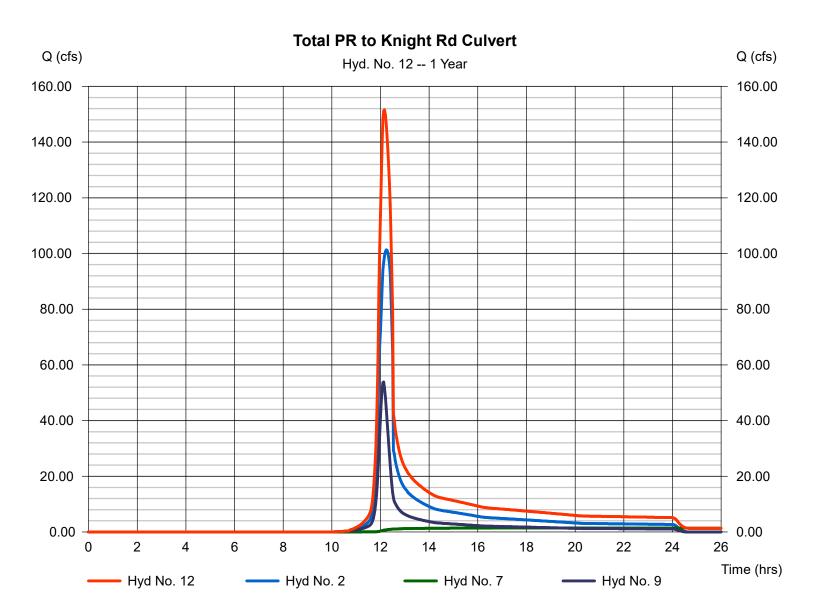

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 11

EX Knight Rd Culvert

Hydrograph type	 Reach 1 yrs 2 min 10 - Total EX to Knight Rd Culvert 	Peak discharge	= 185.01 cfs
Storm frequency		Time to peak	= 12.17 hrs
Time interval		Hyd. volume	= 809,488 cuft
Inflow hyd. No.		Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 22.02 ft/s	Routing coeff.	= 1.9479

Modified Att-Kin routing method used.



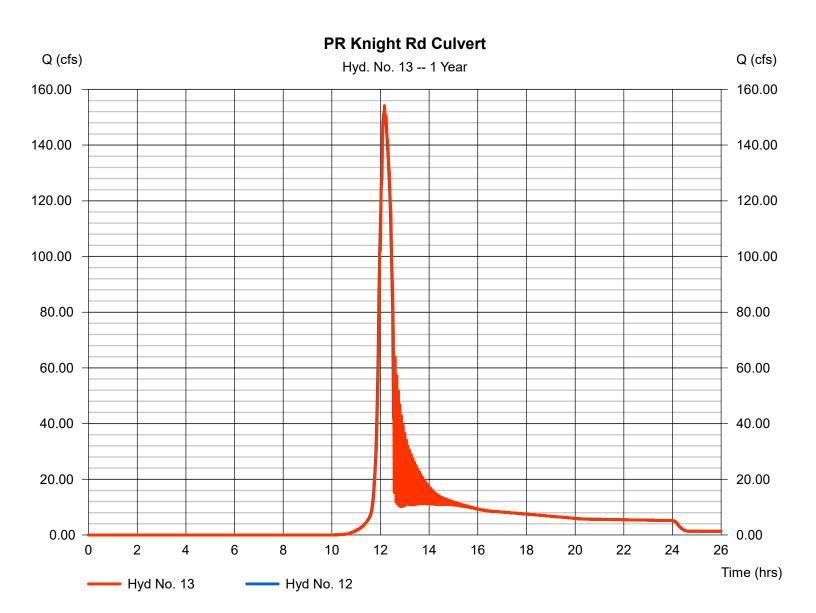
Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 12

Total PR to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge	= 151.55 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 802,515 cuft
Inflow hyds.	= 2, 7, 9	Contrib. drain. area	a = 47.400 ac

23

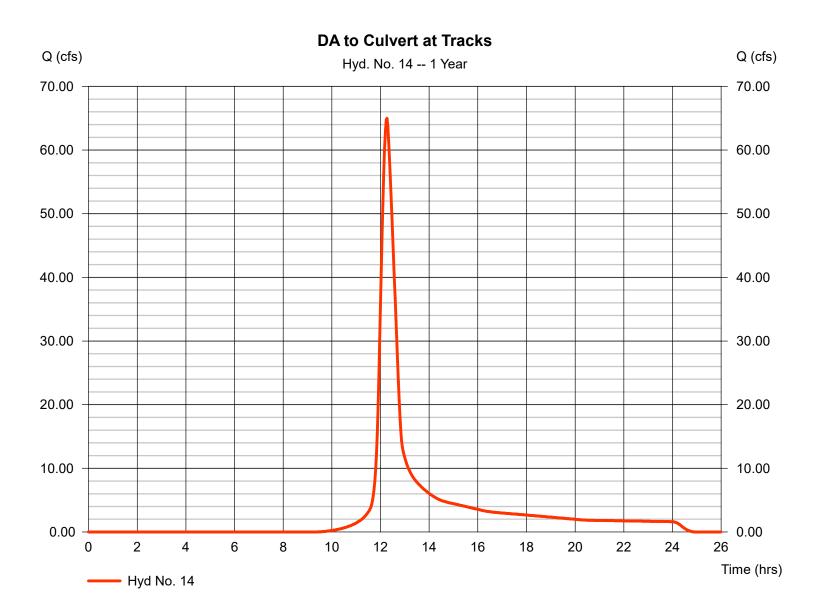

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 13

PR Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 154.19 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 802,514 cuft
Inflow hyd. No.	= 12 - Total PR to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 20.62 ft/s	Routing coeff.	= 1.9444

Modified Att-Kin routing method used.



Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 14

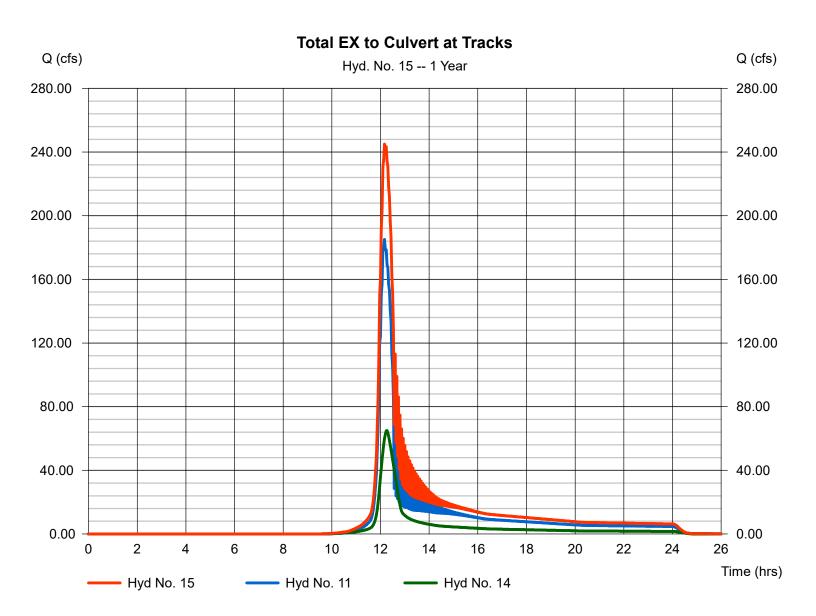
DA to Culvert at Tracks

Hydrograph type	= SCS Runoff	Peak discharge	= 64.98 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 299,359 cuft
Drainage area	= 68.990 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.30 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 14

DA to Culvert at Tracks

Description		<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	=	0.150 300.0 3.25 1.70		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	=	24.99	+	0.00	+	0.00	=	24.99
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	=	740.00 1.00 Unpaved 1.61	I	560.00 6.60 Paved 5.22		0.00 0.00 Paved 0.00		
Travel Time (min)	=	7.64	+	1.79	+	0.00	=	9.43
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= = =	3.14 6.28 3.30 0.015 11.34 60.0		21.21 28.27 2.80 0.015 13.71 650.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	=	0.09	+	0.79	+	0.00	=	0.88
Total Travel Time, Tc							35.30 min	

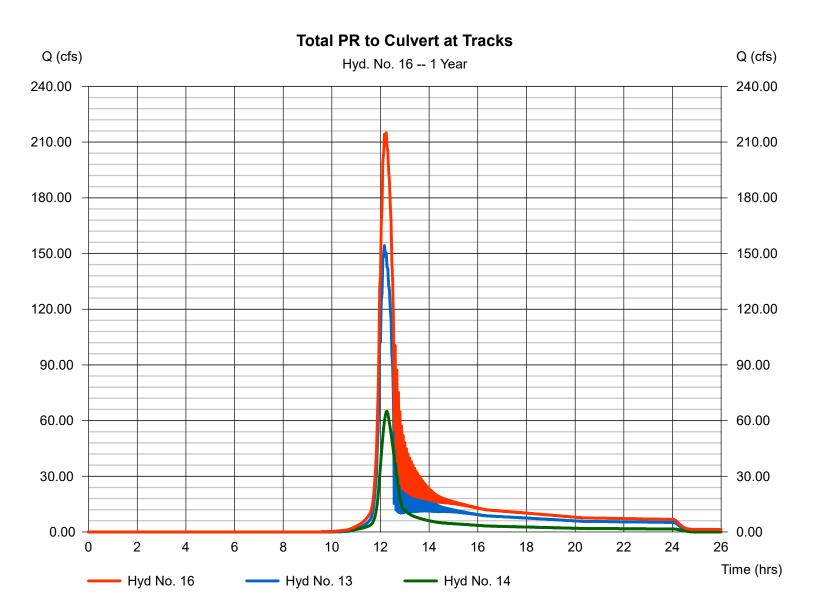

Hydraflow Hydrographs by Intelisolve v9.22

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 15

Total EX to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 244.99 cfs
Storm frequency	= 1 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = 1,108,848 cuft
Inflow hyds.	= 11, 14	Contrib. drain. area = 68.990 ac



Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 16

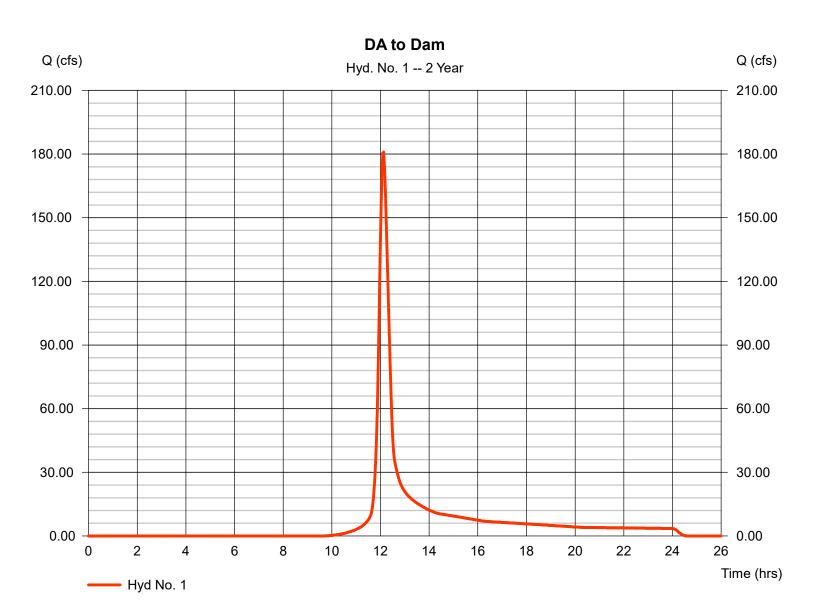
Total PR to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 215.00 cfs
Storm frequency	= 1 yrs	Time to peak = 12.23 hrs
Time interval	= 2 min	Hyd. volume = 1,101,873 cuft
Inflow hyds.	= 13, 14	Contrib. drain. area = 68.990 ac

28

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.22


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	180.90	2	728	636,994				DA to Dam
2	Reservoir	122.45	2	738	636,936	1	254.67	65,759	EX Dam
3	SCS Runoff	23.17	2	732	93,799				DA to School Basin
4	Reservoir	11.97	2	750	93,791	3	272.39	28,057	EX School Basin
5	SCS Runoff	37.18	2	726	128,904				DA to New Basin
6	Combine	42.87	2	730	222,695	4, 5			Total to New Basin
7	Reservoir	1.718	2	1142	220,519	6	253.78	153,972	PR New Basin
8	SCS Runoff	114.92	2	726	399,659				EX DA to Knight Rd Culvert
9	SCS Runoff	75.67	2	726	264,184				PR DA to Knight Rd Culvert
10	Combine	234.98	2	730	1,130,385	2, 4, 8,			Total EX to Knight Rd Culvert
11	Reach	238.11	2	730	1,130,352	10			EX Knight Rd Culvert
12	Combine	191.14	2	730	1,121,638	2, 7, 9,			Total PR to Knight Rd Culvert
13	Reach	194.00	2	730	1,121,638	12			PR Knight Rd Culvert
14	SCS Runoff	89.60	2	736	408,597				DA to Culvert at Tracks
15	Combine	321.68	2	730	1,538,951	11, 14			Total EX to Culvert at Tracks
16	Combine	277.57	2	730	1,530,236	13, 14,			Total PR to Culvert at Tracks
Bro	ookside Ave Flood Study - New Basin.gpw Return Period: 2 Year Friday, Nov 18, 2022				18, 2022				

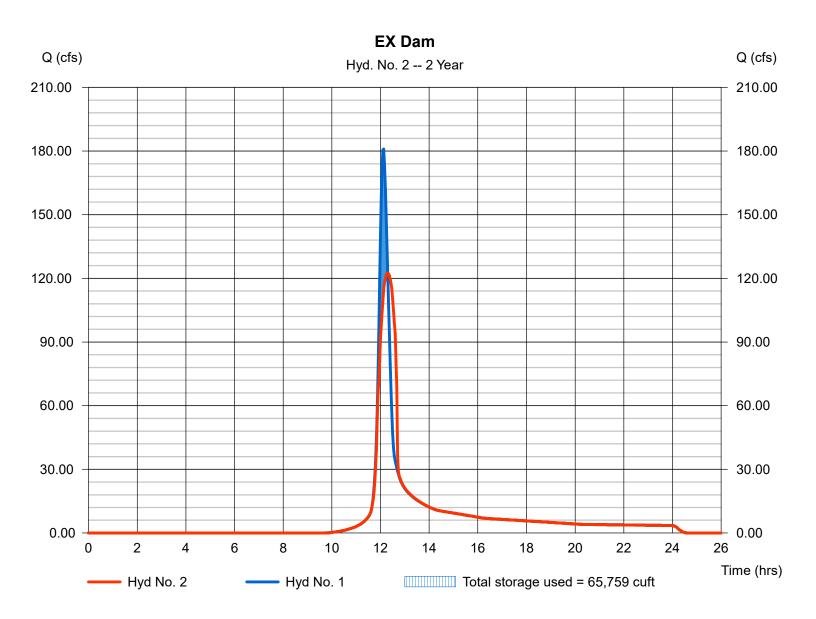
Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 1

DA to Dam

Hydrograph type	= SCS Runoff	Peak discharge	= 180.90 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 636,994 cuft
Drainage area	= 125.440 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.90 min
Total precip.	= 3.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

30

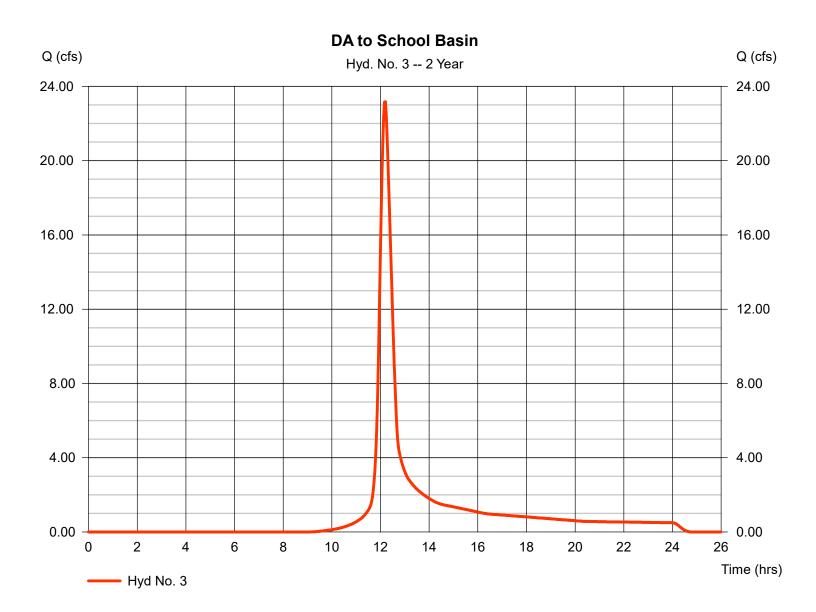

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 2

EX Dam

Hydrograph type	= Reservoir	Peak discharge	= 122.45 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 636,936 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 254.67 ft
Reservoir name	= EX Dam	Max. Storage	= 65,759 cuft

Storage Indication method used.



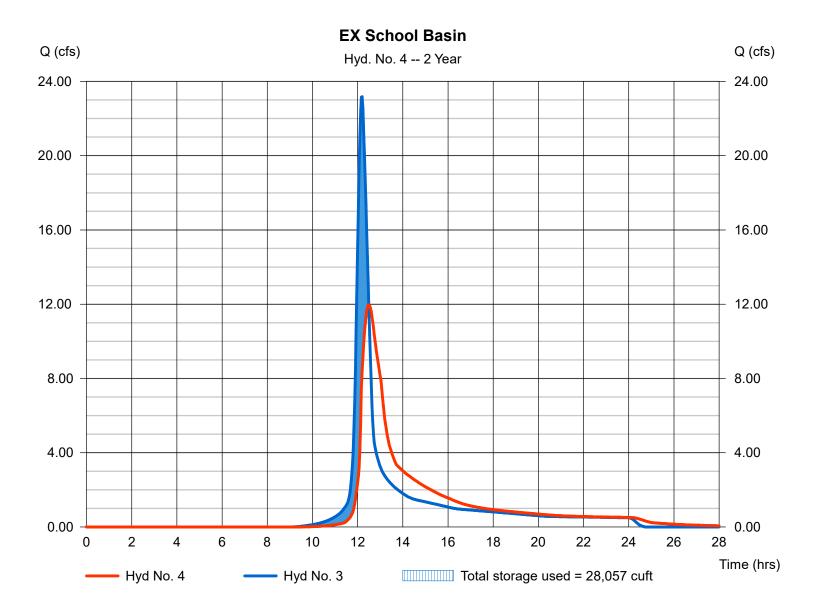
Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 3

DA to School Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 23.17 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.20 hrs
Time interval	= 2 min	Hyd. volume	= 93,799 cuft
Drainage area	= 17.130 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.50 min
Total precip.	= 3.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

32

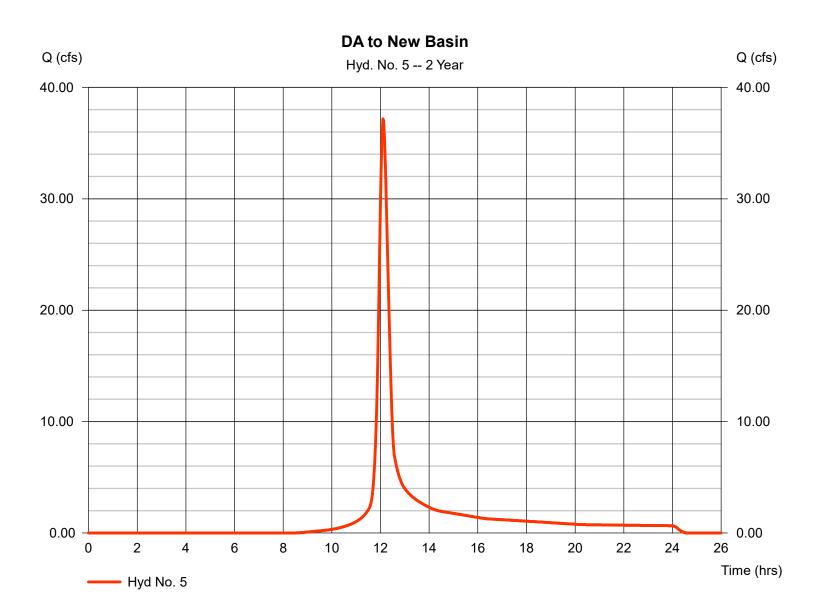

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 4

EX School Basin

Hydrograph type	= Reservoir	Peak discharge	= 11.97 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.50 hrs
Time interval	= 2 min	Hyd. volume	= 93,791 cuft
Inflow hyd. No.	= 3 - DA to School Basin	Max. Elevation	= 272.39 ft
Reservoir name	= EX School Basin	Max. Storage	= 28,057 cuft

Storage Indication method used.



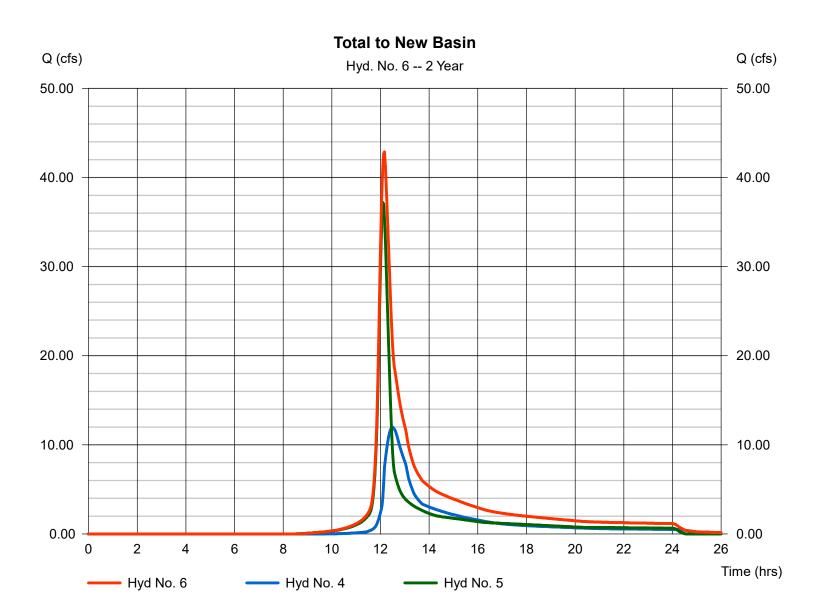
Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 5

DA to New Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 37.18 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 128,904 cuft
Drainage area Basin Slope Tc method Total precip. Storm duration	= 21.140 ac = 0.0 % = TR55 = 3.25 in = 24 hrs	Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor	= 83 = 0 ft

Friday, Nov 18, 2022


34

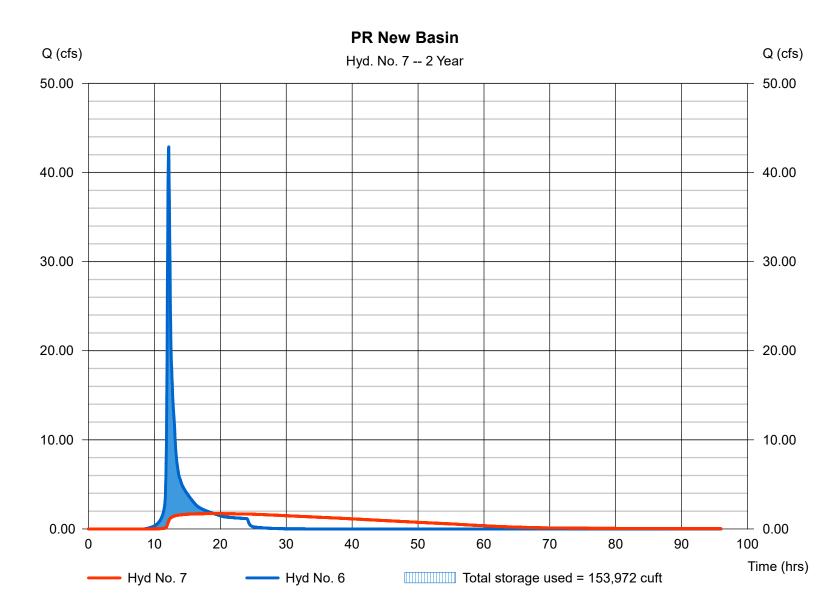
Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 6

Total to New Basin

Hydrograph type	= Combine	Peak discharge	= 42.87 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 222,695 cuft
Inflow hyds.	= 4,5	Contrib. drain. area	a = 21.140 ac

35

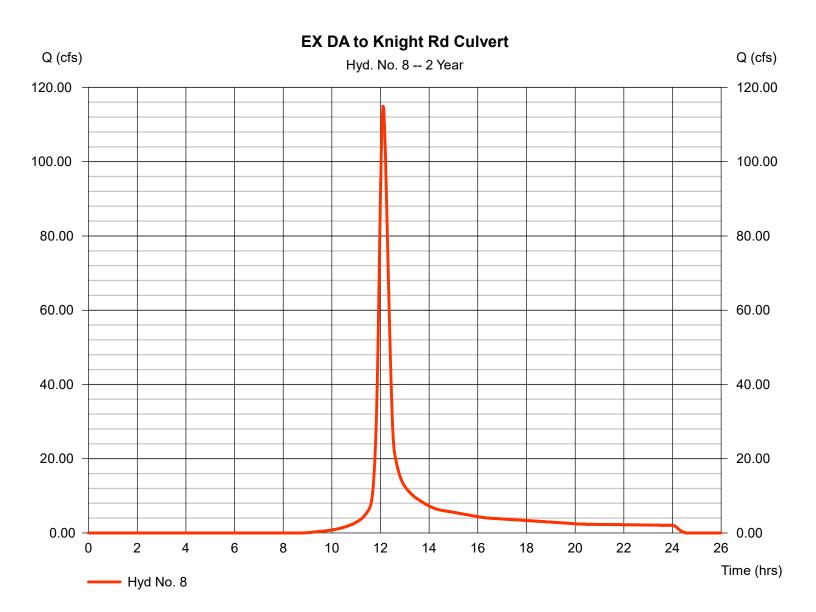

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 7

PR New Basin

Reservoir	Peak discharge	= 1.718 cfs
2 yrs	Time to peak	= 19.03 hrs
2 min	Hyd. volume	= 220,519 cuft
6 - Total to New Basin	Max. Elevation	= 253.78 ft
PR New Basin	Max. Storage	= 153,972 cuft
	2 yrs 2 min 6 - Total to New Basin	2 yrsTime to peak2 minHyd. volume6 - Total to New BasinMax. Elevation

Storage Indication method used.

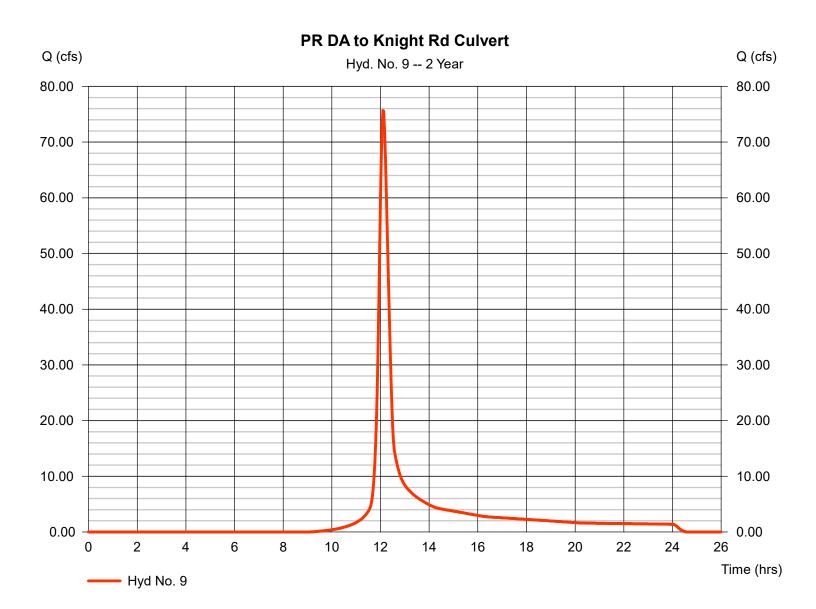

36

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 8

EX DA to Knight Rd Culvert

= SCS Runoff	Peak discharge	= 114.92 cfs
= 2 yrs	Time to peak	= 12.10 hrs
= 2 min	Hyd. volume	= 399,659 cuft
= 68.530 ac	Curve number	= 82
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 23.30 min
= 3.25 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	= 2 yrs = 2 min = 68.530 ac = 0.0 % = TR55 = 3.25 in	= 2 yrsTime to peak= 2 minHyd. volume= 68.530 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 3.25 inDistribution

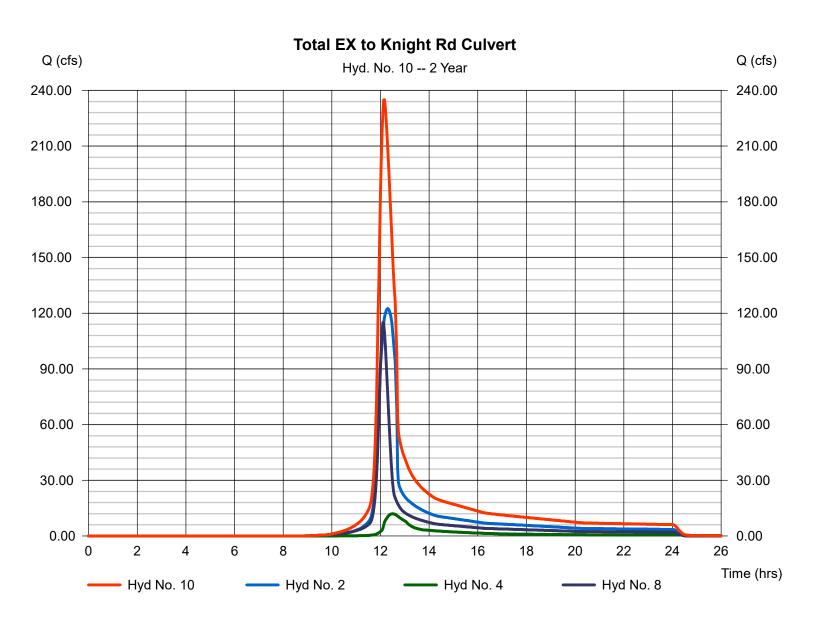

37

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 9

PR DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 75.67 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 264,184 cuft
Drainage area	= 47.400 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 3.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

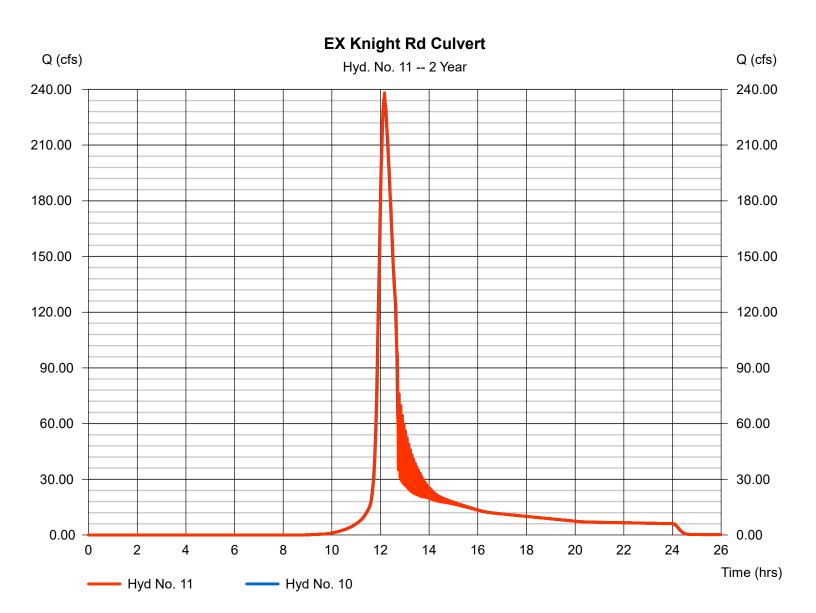


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 10

Total EX to Knight Rd Culvert

Hydrograph type =	= Combine	Peak discharge	= 234.98 cfs
Storm frequency =	= 2 yrs	Time to peak	= 12.17 hrs
Time interval =	= 2 min	Hyd. volume	= 1,130,385 cuft
Inflow hyds. =	= 2, 4, 8	Contrib. drain. area	i = 68.530 ac

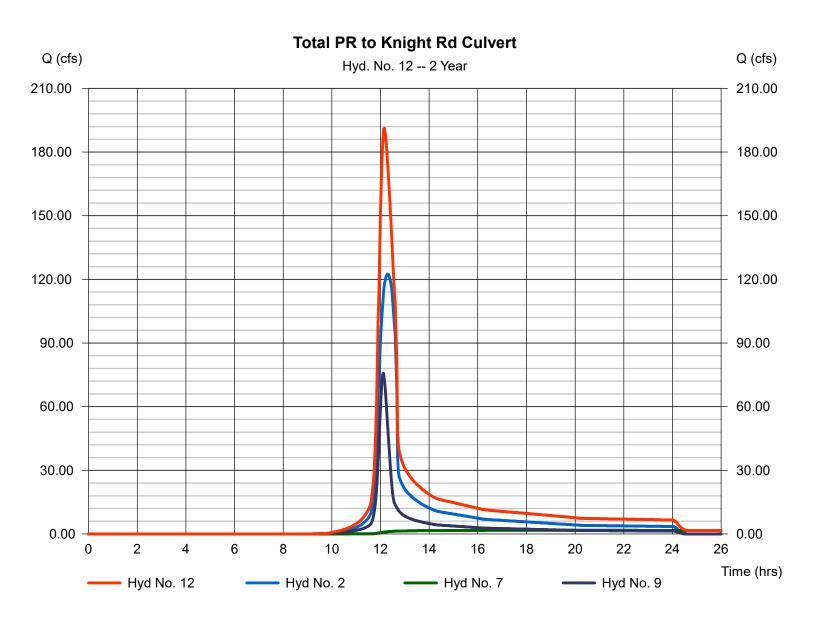

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 11

EX Knight Rd Culvert

Hydrograph type Storm frequency	= Reach = 2 yrs	Peak discharge Time to peak	= 238.11 cfs = 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 1,130,352 cuft
Inflow hyd. No.	= 10 - Total EX to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 24.11 ft/s	Routing coeff.	= 1.9523

Modified Att-Kin routing method used.

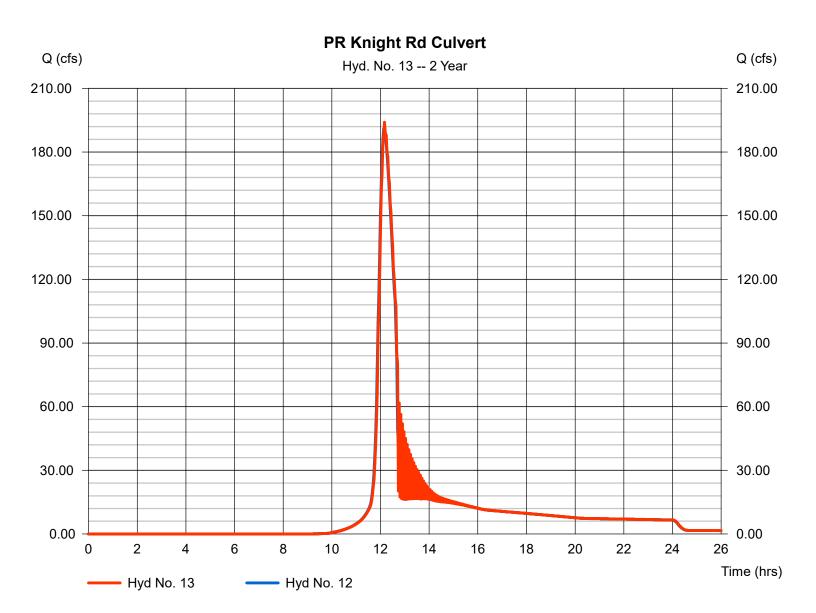


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 12

Total PR to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 191.14 cfs
Storm frequency	= 2 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = 1,121,638 cuft
Inflow hyds.	= 2, 7, 9	Contrib. drain. area = 47.400 ac

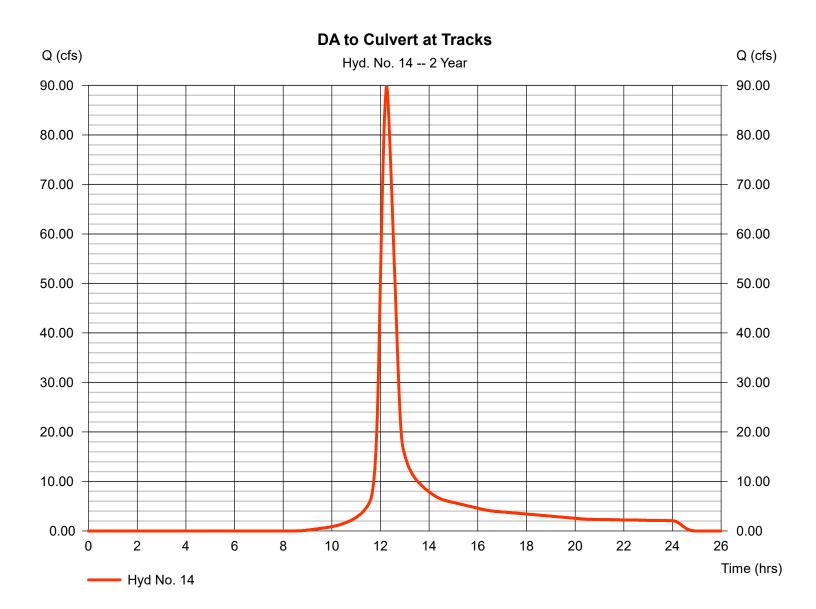

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 13

PR Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 194.00 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 1,121,638 cuft
Inflow hyd. No.	= 12 - Total PR to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 22.40 ft/s	Routing coeff.	= 1.9487

Modified Att-Kin routing method used.



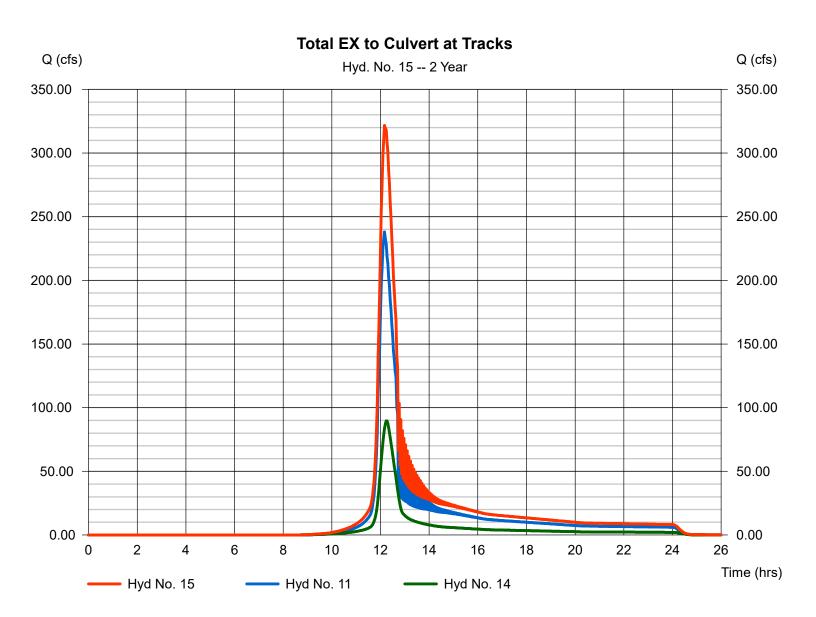
Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 14

DA to Culvert at Tracks

Hydrograph type	= SCS Runoff	Peak discharge	= 89.60 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 408,597 cuft
Drainage area	= 68.990 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.30 min
Total precip.	= 3.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Friday, Nov 18, 2022

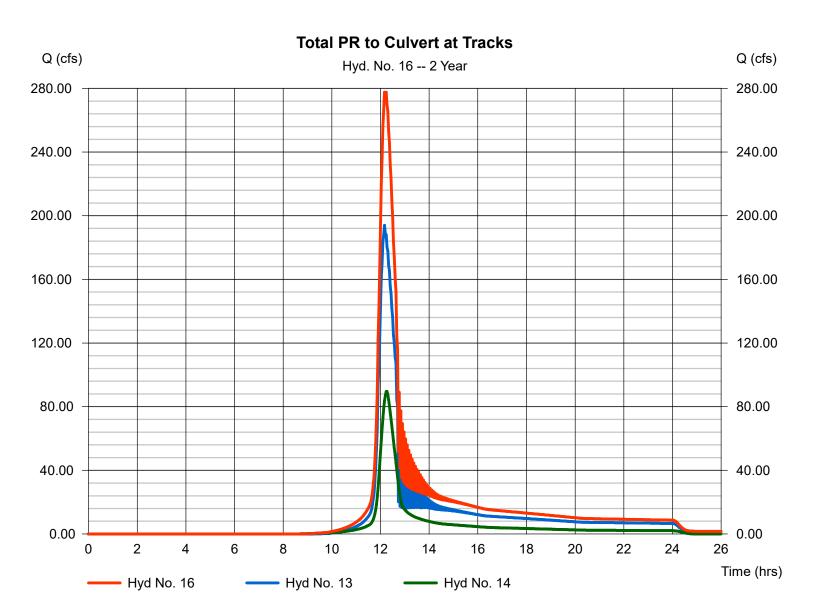

43

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 15

Total EX to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 321.68 cfs
Storm frequency	= 2 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = $1,538,951$ cuft
Inflow hyds.	= 11, 14	Contrib. drain. area = 68.990 ac



Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 16

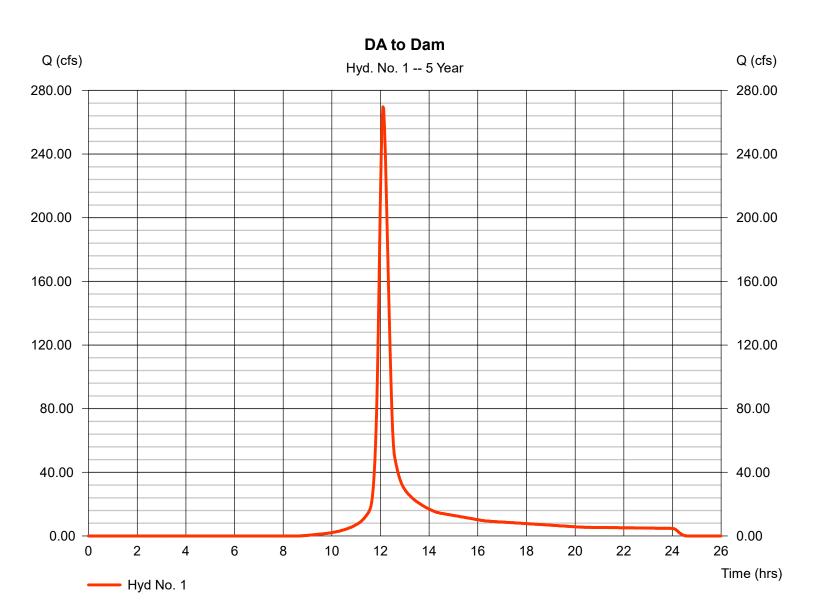
Total PR to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge	= 277.57 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 1,530,236 cuft
Inflow hyds.	= 13, 14	Contrib. drain. area	a = 68.990 ac

45

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.22

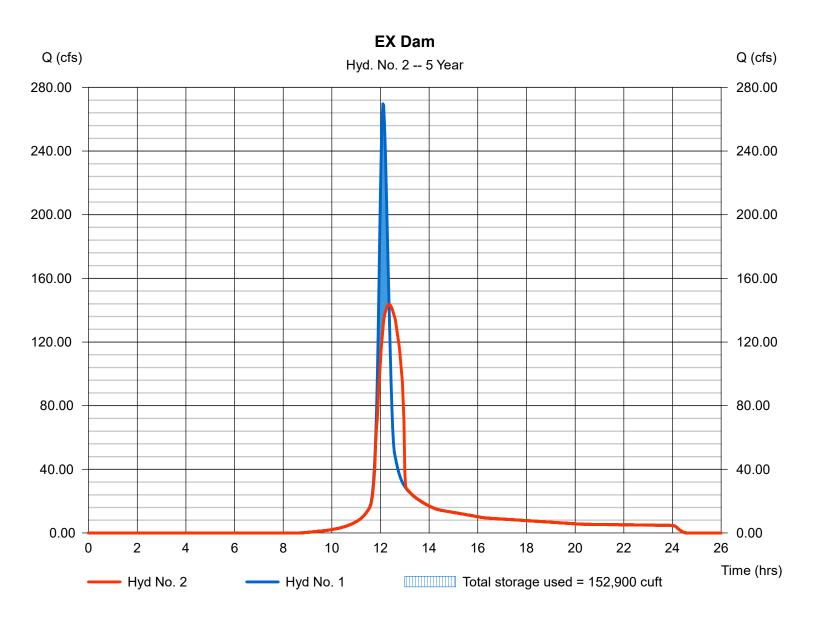

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	269.70	2	726	936,440				DA to Dam
2	Reservoir	143.57	2	742	936,383	1	257.10	152,900	EX Dam
3	SCS Runoff	33.84	2	730	135,585				DA to School Basin
4	Reservoir	18.44	2	748	135,577	3	272.89	39,715	EX School Basin
5	SCS Runoff	53.10	2	726	183,324				DA to New Basin
6	Combine	62.94	2	728	318,902	4, 5			Total to New Basin
7	Reservoir	2.084	2	1180	315,020	6	255.39	231,689	PR New Basin
8	SCS Runoff	165.88	2	726	572,985				EX DA to Knight Rd Culvert
9	SCS Runoff	110.43	2	726	381,875				PR DA to Knight Rd Culvert
10	Combine	308.22	2	728	1,644,944	2, 4, 8,			Total EX to Knight Rd Culvert
11	Reach	311.00	2	730	1,644,911	10			EX Knight Rd Culvert
12	Combine	244.14	2	728	1,633,272	2, 7, 9,			Total PR to Knight Rd Culvert
13	Reach	246.66	2	730	1,633,274	12			PR Knight Rd Culvert
14	SCS Runoff	128.23	2	734	581,100				DA to Culvert at Tracks
15	Combine	431.54	2	730	2,226,012	11, 14			Total EX to Culvert at Tracks
16	Combine	367.20	2	730	2,214,371	13, 14,			Total PR to Culvert at Tracks
Bro	okside Ave F	lood Stud	v - New	Basin.gov	v Return P	eriod: 5 Ye	ar	Friday, Nov	/ 18. 2022

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 1

DA to Dam

Hydrograph type	= SCS Runoff	Peak discharge	= 269.70 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 936,440 cuft
Drainage area	= 125.440 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.90 min
Total precip.	= 4.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

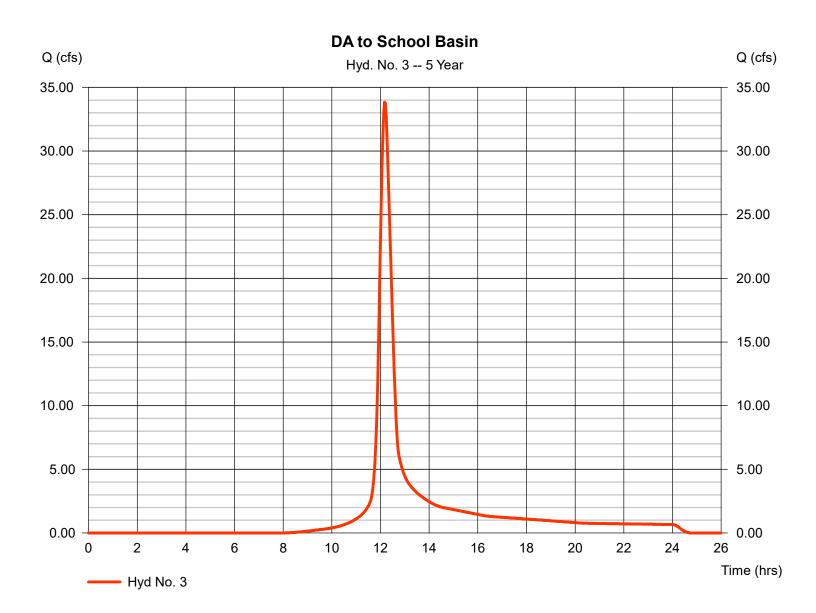

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 2

EX Dam

Hydrograph type	= Reservoir	Peak discharge	= 143.57 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.37 hrs
Time interval	= 2 min	Hyd. volume	= 936,383 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 257.10 ft
Reservoir name	= EX Dam	Max. Storage	= 152,900 cuft

Storage Indication method used.

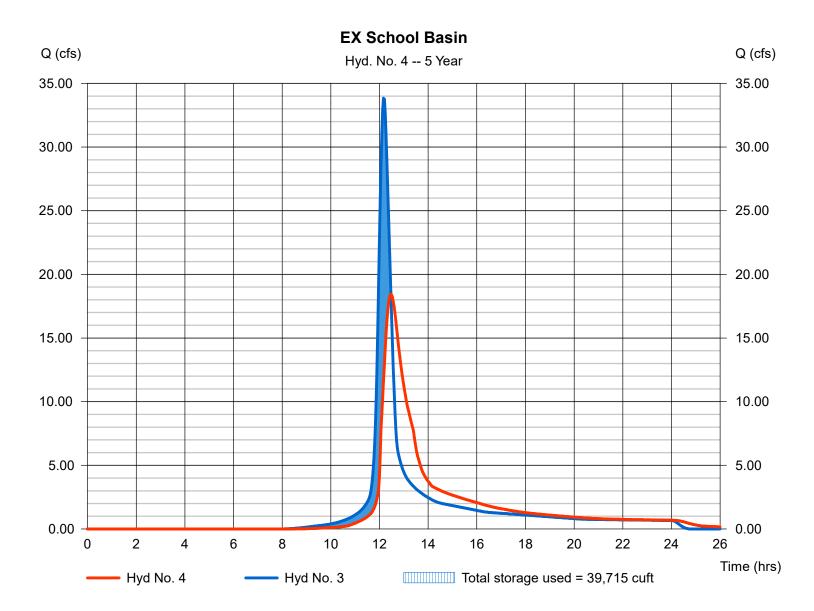


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 3

DA to School Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 33.84 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 135,585 cuft
Drainage area	= 17.130 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.50 min
Total precip.	= 4.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

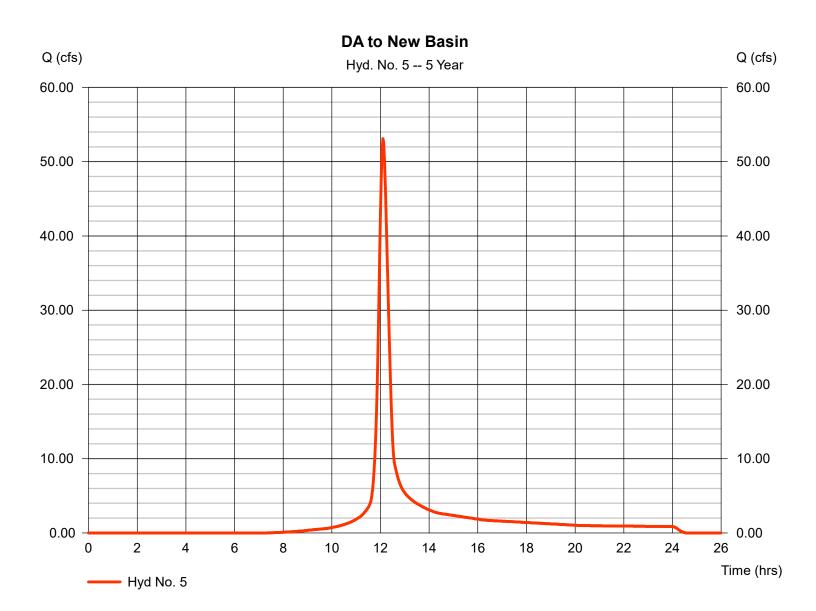

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 4

EX School Basin

= Reservoir	Peak discharge	= 18.44 cfs
= 5 yrs	Time to peak	= 12.47 hrs
= 2 min	Hyd. volume	= 135,577 cuft
= 3 - DA to School Basin	Max. Elevation	= 272.89 ft
= EX School Basin	Max. Storage	= 39,715 cuft
	= 5 yrs = 2 min = 3 - DA to School Basin	= 5 yrsTime to peak= 2 minHyd. volume= 3 - DA to School BasinMax. Elevation

Storage Indication method used.

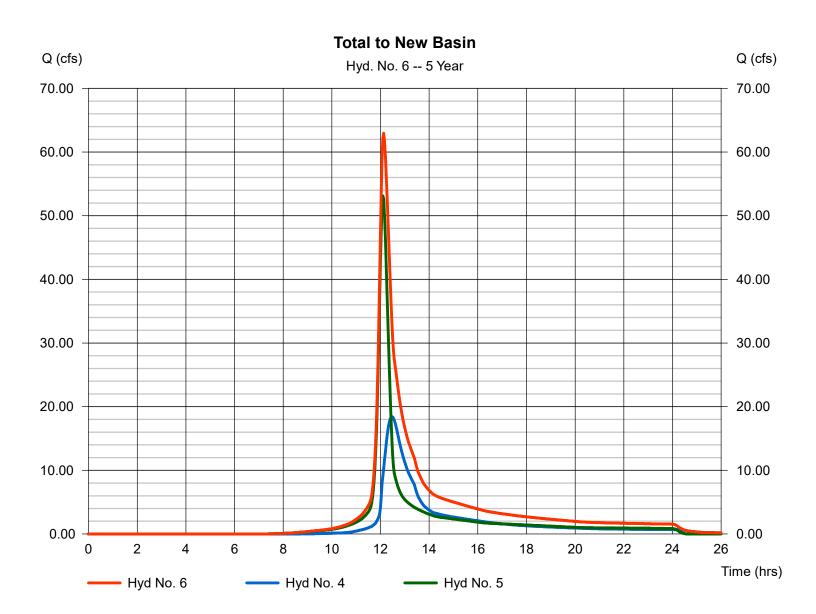

50

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 5

DA to New Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 53.10 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 183,324 cuft
Drainage area	= 21.140 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 20.20 min
Total precip.	= 4.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



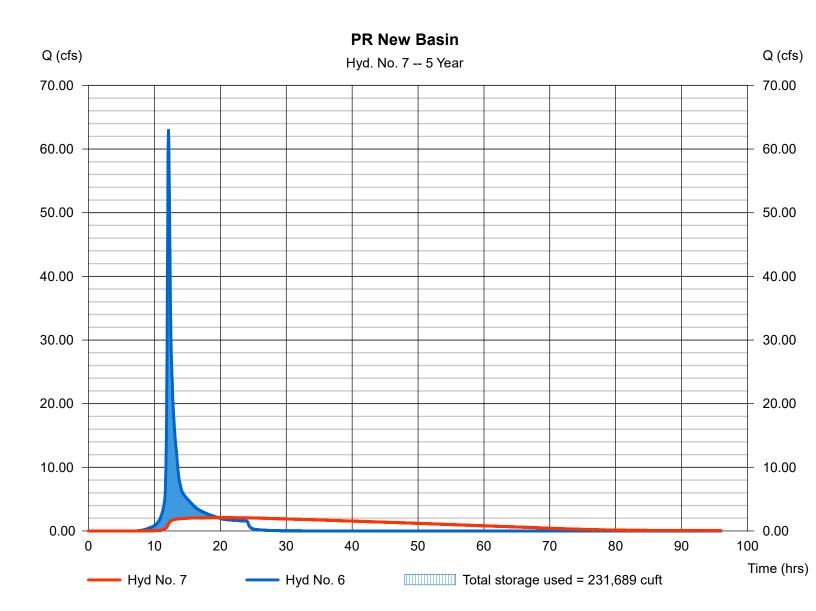
Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 6

Total to New Basin

Hydrograph type	= Combine	Peak discharge	= 62.94 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 318,902 cuft
Inflow hyds.	= 4, 5	Contrib. drain. area	= 21.140 ac

52

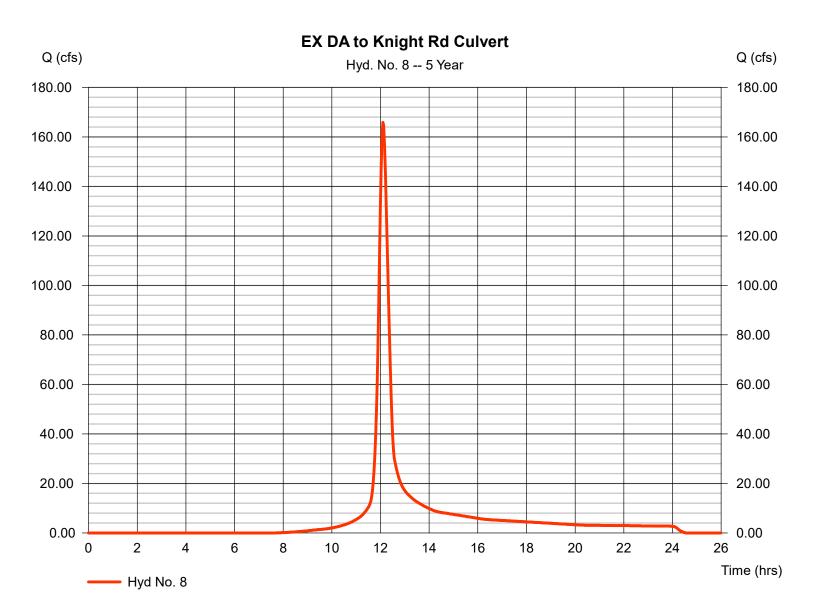

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 7

PR New Basin

= Reservoir	Peak discharge	= 2.084 cfs
= 5 yrs	Time to peak	= 19.67 hrs
= 2 min	Hyd. volume	= 315,020 cuft
= 6 - Total to New Basin	Max. Elevation	= 255.39 ft
= PR New Basin	Max. Storage	= 231,689 cuft
	= 5 yrs = 2 min = 6 - Total to New Basin	= 5 yrsTime to peak= 2 minHyd. volume= 6 - Total to New BasinMax. Elevation

Storage Indication method used.

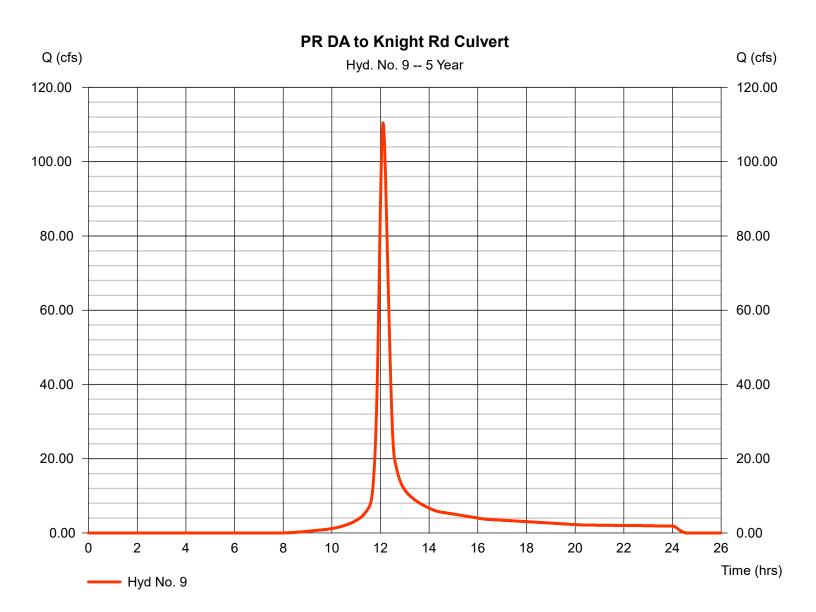


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 8

EX DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 165.88 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 572,985 cuft
Drainage area	= 68.530 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 4.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

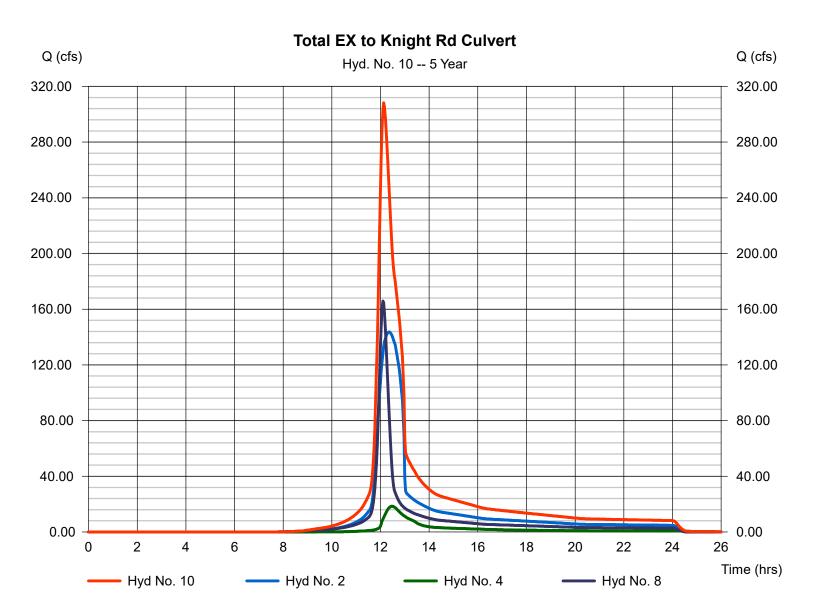


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 9

PR DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 110.43 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 381,875 cuft
Drainage area	= 47.400 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 4.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

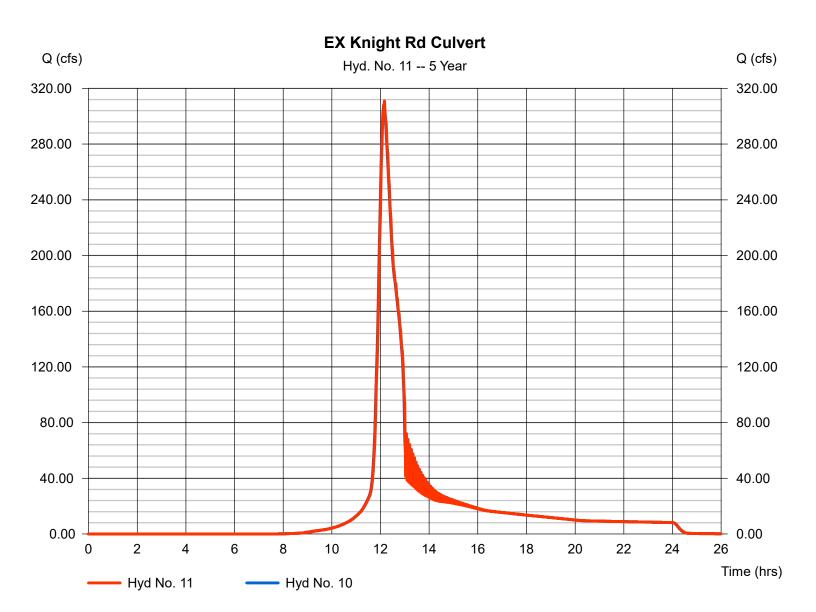


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 10

Total EX to Knight Rd Culvert

t


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 11

EX Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 311.00 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 1,644,911 cuft
Inflow hyd. No.	= 10 - Total EX to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 26.57 ft/s	Routing coeff.	= 1.9566

Modified Att-Kin routing method used.

57

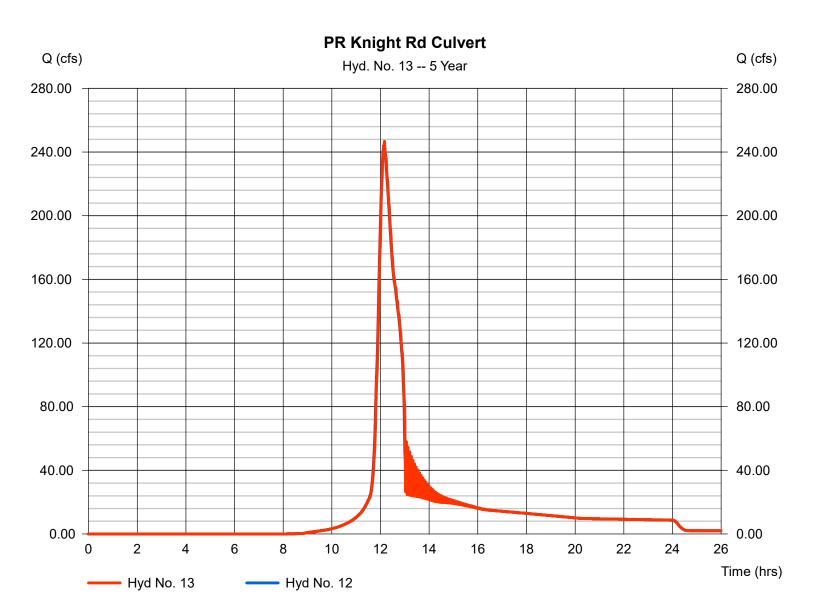
Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 12

Total PR to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 244.14 cfs
Storm frequency	= 5 yrs	Time to peak = 12.13 hrs
Time interval	= 2 min	Hyd. volume = $1,633,272$ cuft
Inflow hyds.	= 2, 7, 9	Contrib. drain. area = 47.400 ac

58

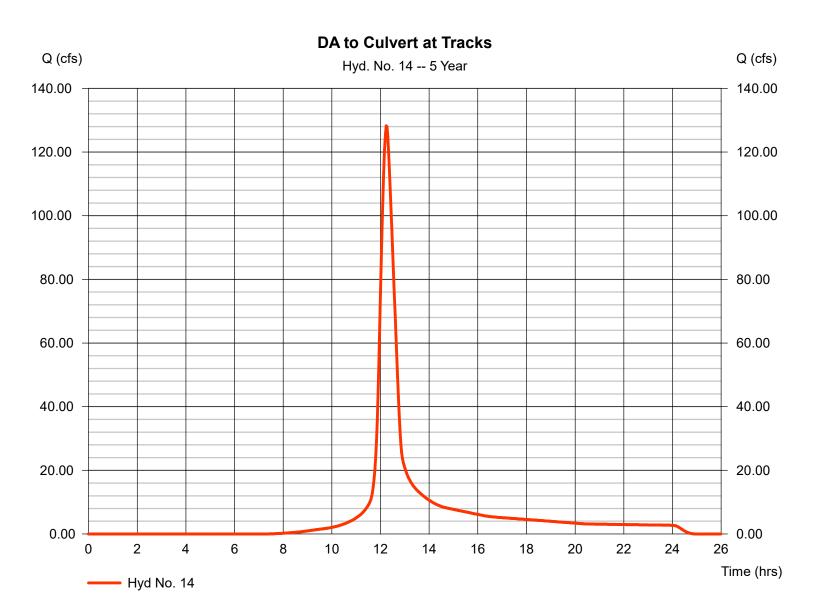

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 13

PR Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 246.66 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 1,633,274 cuft
Inflow hyd. No.	= 12 - Total PR to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 24.45 ft/s	Routing coeff.	= 1.9529
Reach length Manning's n Side slope Rating curve x	= 55.0 ft = 0.013 = 0.0:1 = 6.806	Channel slope Bottom width Max. depth Rating curve m	= 5.7 % = 8.0 ft = 2.7 ft = 1.556

Modified Att-Kin routing method used.

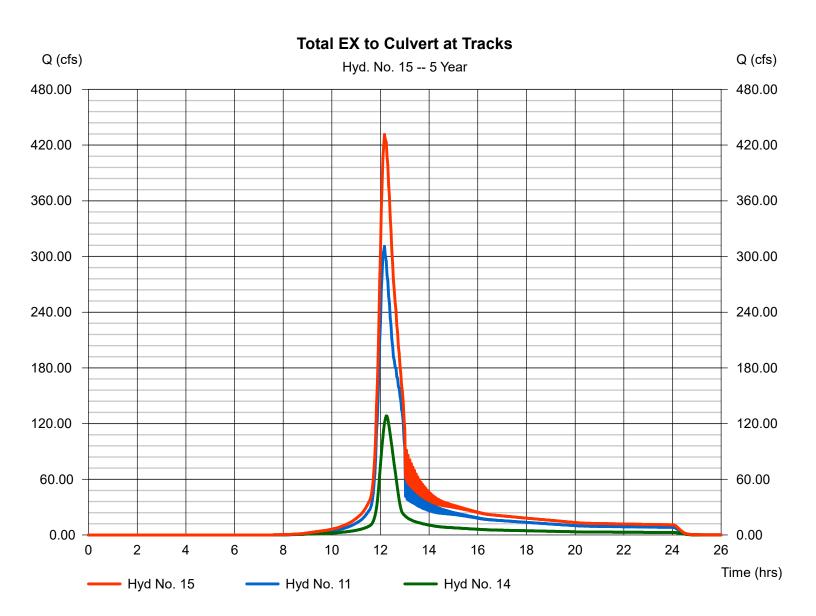


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 14

DA to Culvert at Tracks

Hydrograph type	= SCS Runoff	Peak discharge	= 128.23 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 581,100 cuft
Drainage area	= 68.990 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.30 min
Total precip.	= 4.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

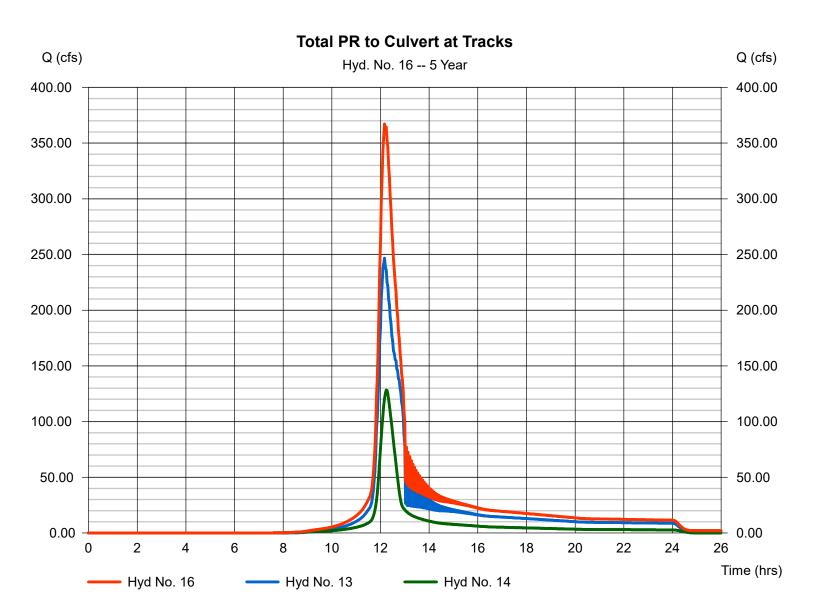


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 15

Total EX to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 431.54 cfs
Storm frequency	= 5 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = $2,226,012$ cuft
Inflow hyds.	= 11, 14	Contrib. drain. area = 68.990 ac



Hydraflow Hydrographs by Intelisolve v9.22

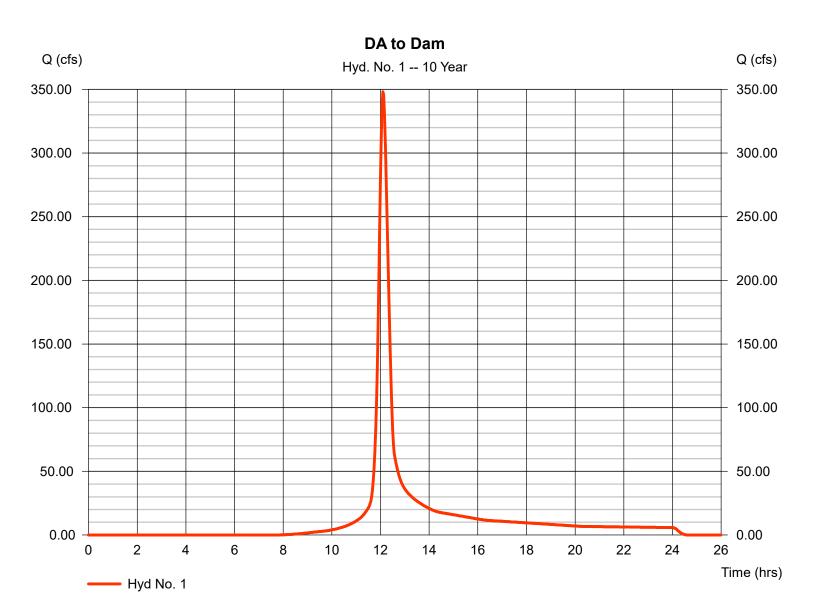
Hyd. No. 16

Total PR to Culvert at Tracks

= Combine	Peak discharge = 367.20 cfs
= 5 yrs	Time to peak = 12.17 hrs
= 2 min	Hyd. volume = $2,214,371$ cuft
= 13, 14	Contrib. drain. area = 68.990 ac
	= 5 yrs = 2 min

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.22

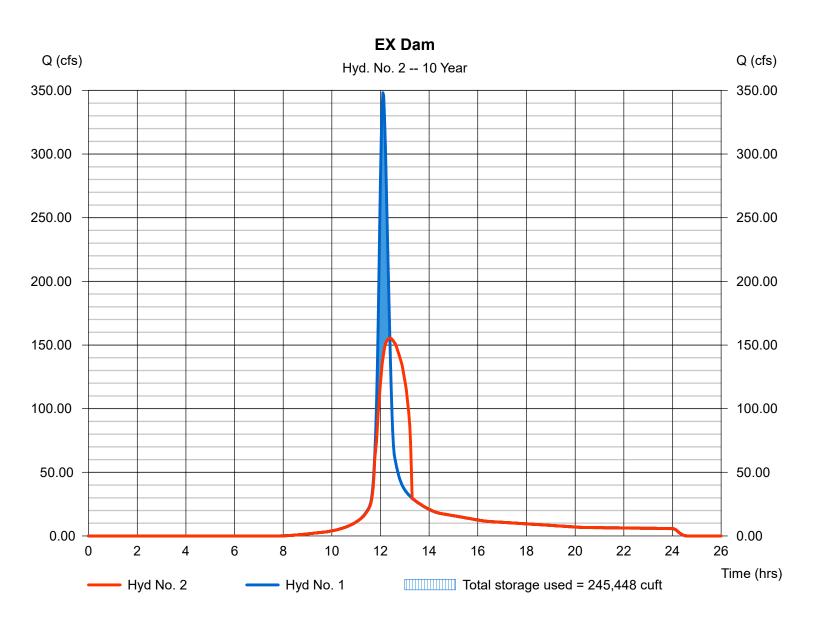

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	348.18	2	726	1,203,285				DA to Dam
2	Reservoir	155.32	2	744	1,203,227	1	258.61	245,448	EX Dam
3	SCS Runoff	43.17	2	730	172,509				DA to School Basin
4	Reservoir	24.40	2	748	172,501	3	273.29	49,337	EX School Basin
5	SCS Runoff	66.84	2	726	231,030				DA to New Basin
6	Combine	79.96	2	728	403,530	4, 5			Total to New Basin
7	Reservoir	2.348	2	1206	397,452	6	256.73	301,846	PR New Basin
8	SCS Runoff	210.08	2	726	725,522				EX DA to Knight Rd Culvert
9	SCS Runoff	140.73	2	726	485,870				PR DA to Knight Rd Culvert
10	Combine	365.25	2	728	2,101,253	2, 4, 8,			Total EX to Knight Rd Culvert
11	Reach	368.57	2	728	2,101,216	10			EX Knight Rd Culvert
12	Combine	284.21	2	728	2,086,549	2, 7, 9,			Total PR to Knight Rd Culvert
13	Reach	287.67	2	728	2,086,544	12			PR Knight Rd Culvert
14	SCS Runoff	161.67	2	734	732,316				DA to Culvert at Tracks
15	Combine	518.45	2	732	2,833,535	11, 14			Total EX to Culvert at Tracks
16	Combine	440.81	2	732	2,818,860	13, 14,			Total PR to Culvert at Tracks
Bro	okside Ave Fl	lood Stud	lv - New	Basin gov	v Return P	eriod: 10 \	/ear	Friday, Nov	/ 18. 2022

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 1

DA to Dam

Hydrograph type	= SCS Runoff	Peak discharge	= 348.18 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 1,203,285 cuft
Drainage area	= 125.440 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.90 min
Total precip.	= 4.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

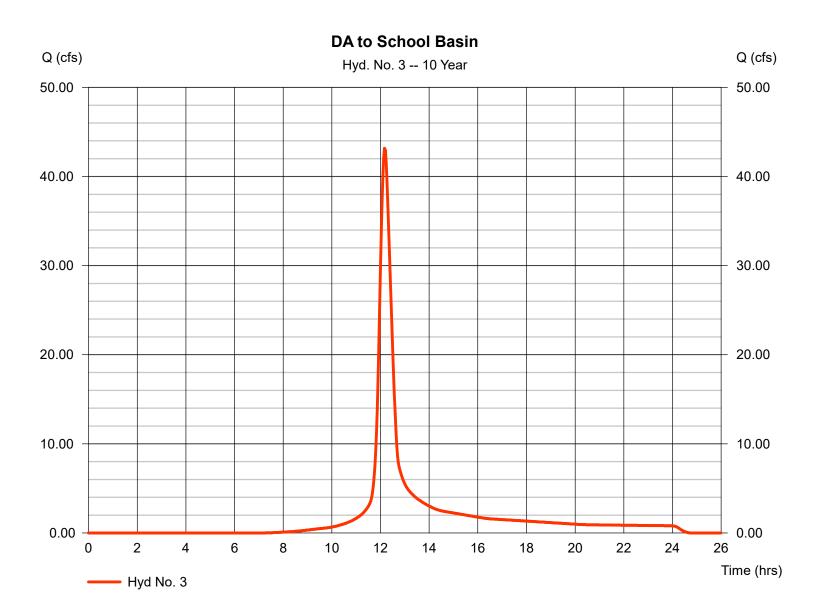

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 2

EX Dam

Hydrograph type	= Reservoir	Peak discharge	= 155.32 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.40 hrs
Time interval	= 2 min	Hyd. volume	= 1,203,227 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 258.61 ft
Reservoir name	= EX Dam	Max. Storage	= 245,448 cuft
		_	

Storage Indication method used.

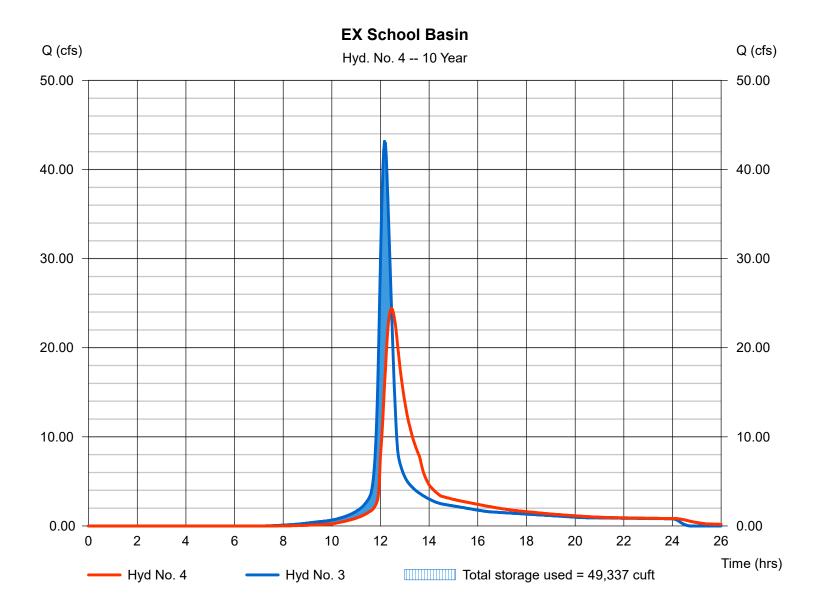


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 3

DA to School Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 43.17 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 172,509 cuft
Drainage area	= 17.130 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.50 min
Total precip.	= 4.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

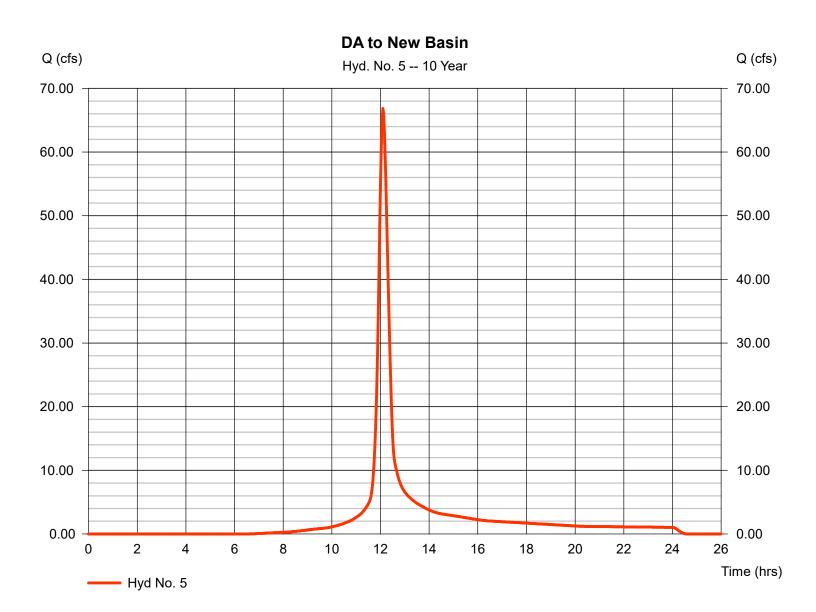

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 4

EX School Basin

Hydrograph type	= Reservoir	Peak discharge	= 24.40 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.47 hrs
Time interval	= 2 min	Hyd. volume	= 172,501 cuft
Inflow hyd. No.	= 3 - DA to School Basin	Max. Elevation	= 273.29 ft
Reservoir name	= EX School Basin	Max. Storage	= 49,337 cuft

Storage Indication method used.

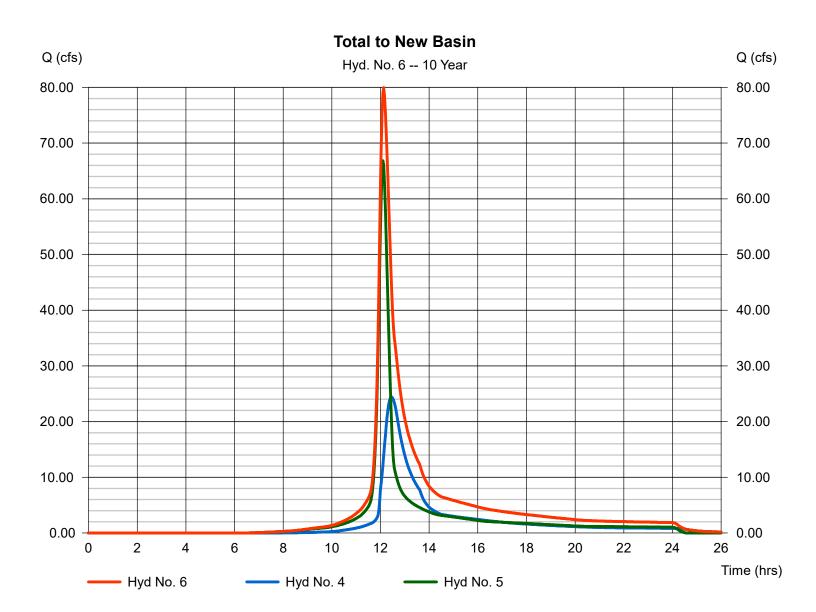

67

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 5

DA to New Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 66.84 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 231,030 cuft
Drainage area	= 21.140 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 20.20 min
Total precip.	= 4.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

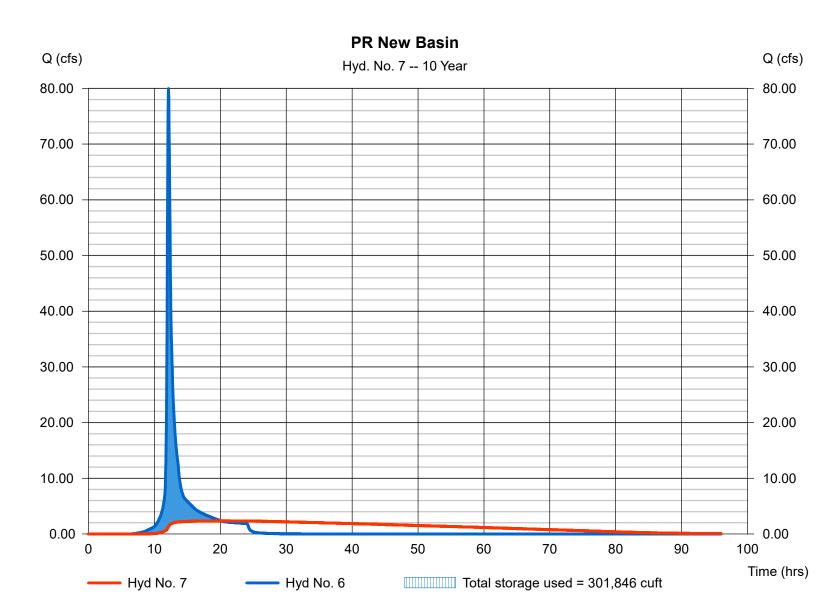

68

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 6

Total to New Basin

Hydrograph type	= Combine	Peak discharge	= 79.96 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 403,530 cuft
Inflow hyds.	= 4, 5	Contrib. drain. area	a = 21.140 ac

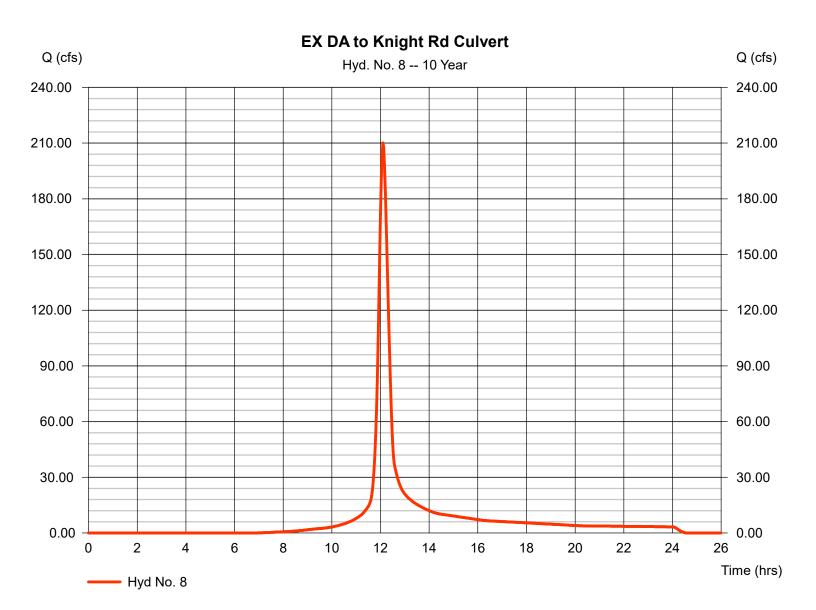

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 7

PR New Basin

eservoir	Peak discharge	= 2.348 cfs
0 yrs	Time to peak	= 20.10 hrs
min	Hyd. volume	= 397,452 cuft
- Total to New Basin	Max. Elevation	= 256.73 ft
R New Basin	Max. Storage	= 301,846 cuft
) yrs min - Total to New Basin) yrs Time to peak min Hyd. volume - Total to New Basin Max. Elevation

Storage Indication method used.

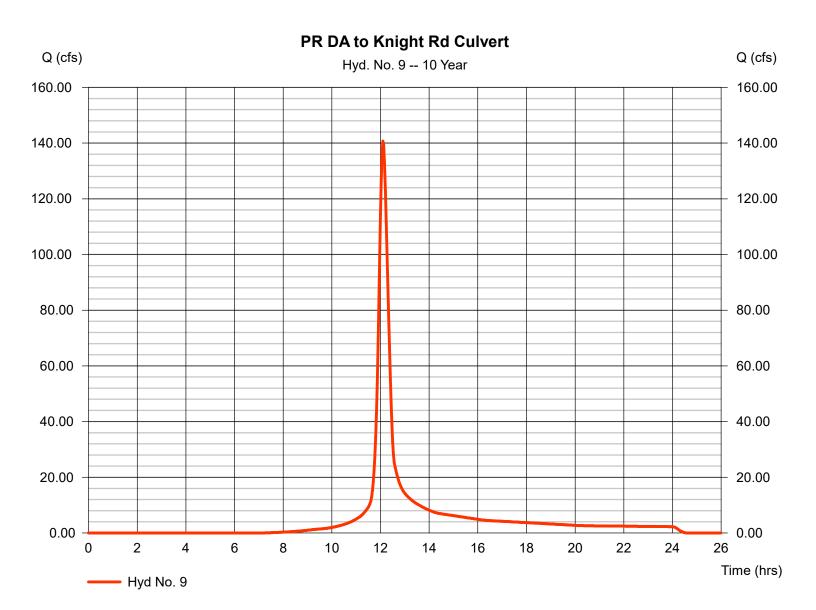


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 8

EX DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 210.08 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 725,522 cuft
Drainage area	= 68.530 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 4.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

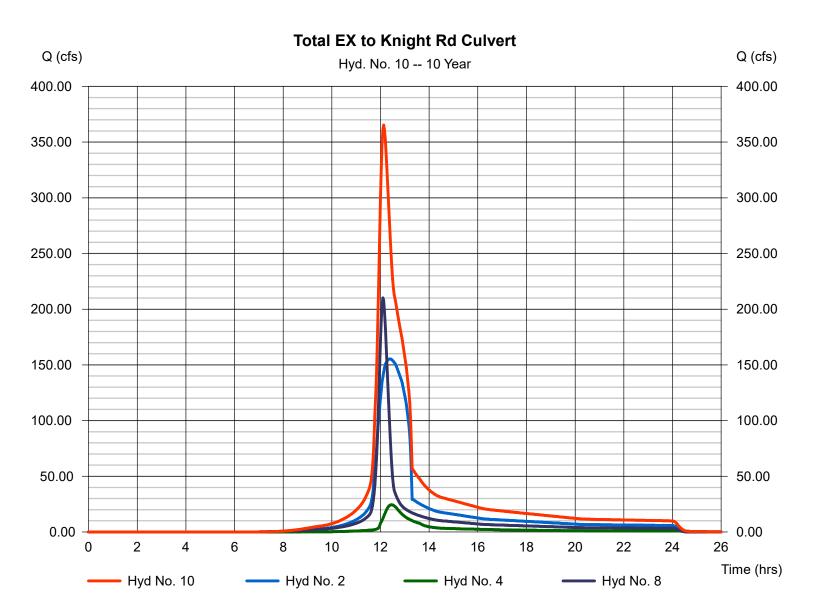


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 9

PR DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 140.73 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 485,870 cuft
Drainage area	= 47.400 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 4.76 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

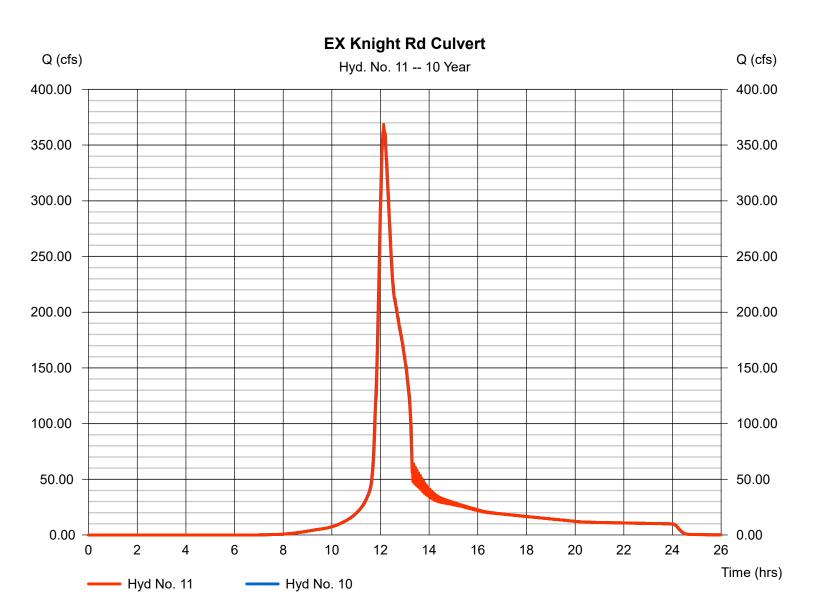


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 10

Total EX to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 365.25 cfs
Storm frequency	= 10 yrs	Time to peak = 12.13 hrs
Time interval	= 2 min	Hyd. volume = 2,101,253 cuft
Inflow hyds.	= 2, 4, 8	Contrib. drain. area = 68.530 ac

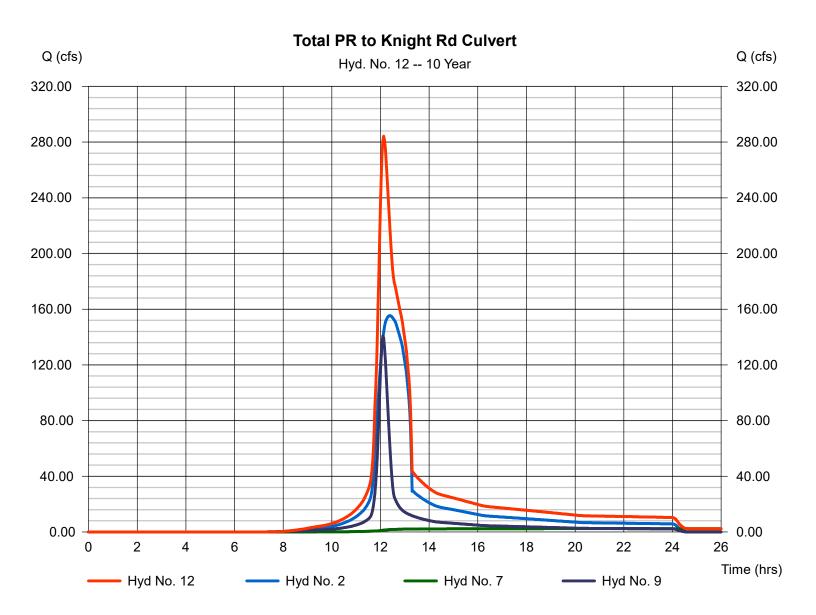

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 11

EX Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 368.57 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 2,101,216 cuft
Inflow hyd. No.	= 10 - Total EX to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 28.23 ft/s	Routing coeff.	= 1.9591

Modified Att-Kin routing method used.

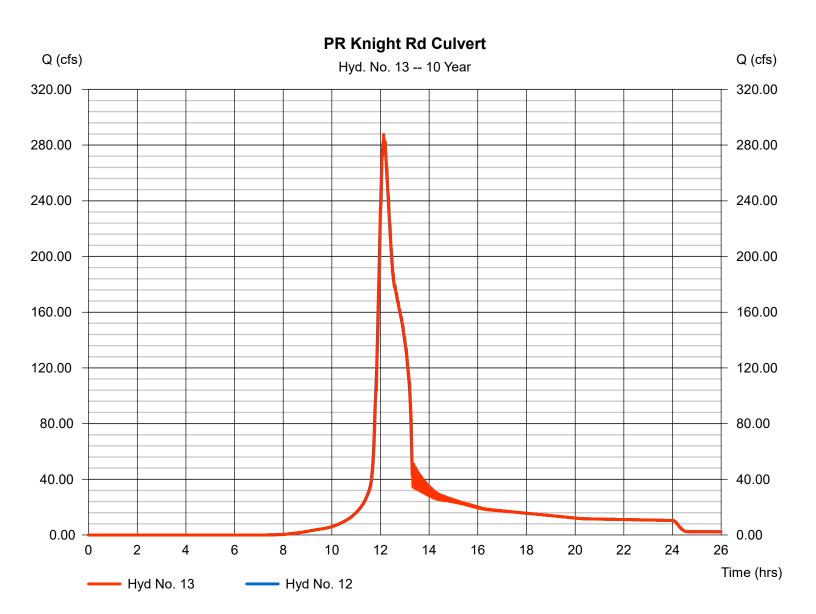


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 12

Total PR to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 284.21 cfs
Storm frequency	= 10 yrs	Time to peak = 12.13 hrs
Time interval	= 2 min	Hyd. volume = $2,086,549$ cuft
Inflow hyds.	= 2, 7, 9	Contrib. drain. area = 47.400 ac

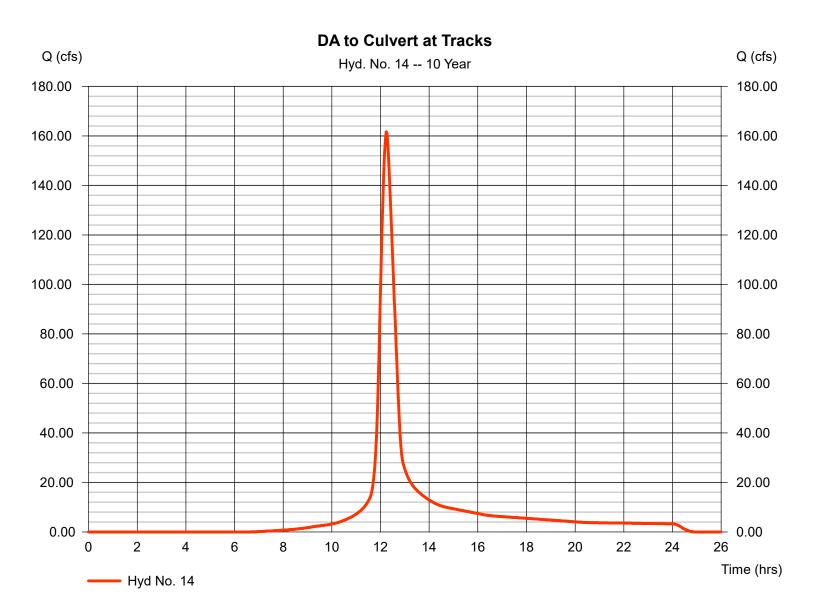

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 13

PR Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 287.67 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 2,086,544 cuft
Inflow hyd. No.	= 12 - Total PR to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 25.81 ft/s	Routing coeff.	= 1.9554
Manning's n Side slope Rating curve x	= 0.013 = 0.0:1 = 6.806	Bottom width Max. depth Rating curve m	= 8.0 ft = 2.7 ft = 1.556

Modified Att-Kin routing method used.

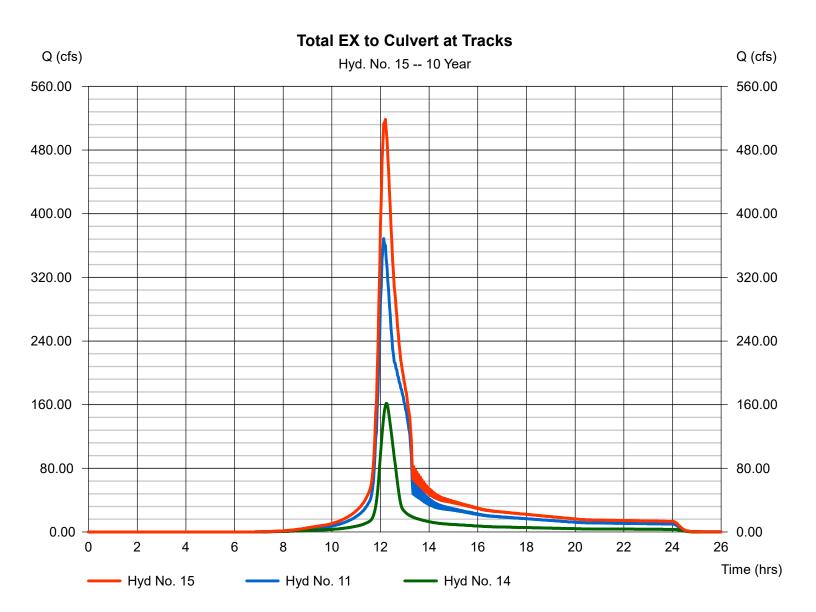


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 14

DA to Culvert at Tracks

= SCS Runoff	Peak discharge	= 161.67 cfs
= 10 yrs	Time to peak	= 12.23 hrs
= 2 min	Hyd. volume	= 732,316 cuft
= 68.990 ac	Curve number	= 83
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 35.30 min
= 4.76 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	= 10 yrs = 2 min = 68.990 ac = 0.0 % = TR55 = 4.76 in	= 10 yrsTime to peak= 2 minHyd. volume= 68.990 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 4.76 inDistribution

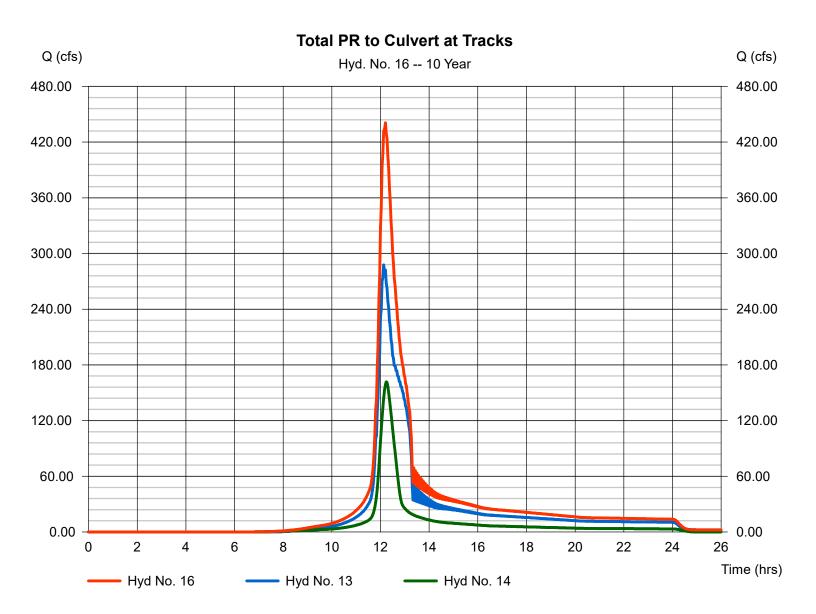


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 15

Total EX to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 518.45 cfs
Storm frequency	= 10 yrs	Time to peak = 12.20 hrs
Time interval	= 2 min	Hyd. volume = 2,833,535 cuft
Inflow hyds.	= 11, 14	Contrib. drain. area = 68.990 ac


78

Hydraflow Hydrographs by Intelisolve v9.22

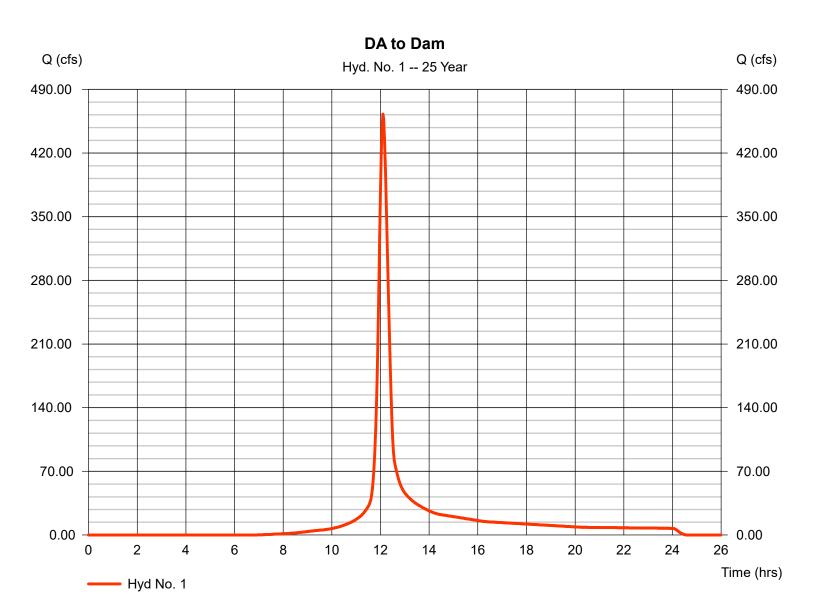
Hyd. No. 16

Total PR to Culvert at Tracks

- Combine	Peak discharge	= 440.81 cfs
= 10 yrs	Time to peak	= 12.20 hrs
= 2 min	Hyd. volume	= 2,818,860 cuft
- 13, 14	Contrib. drain. area	= 68.990 ac
	10 yrs 2 min	10 yrsTime to peak2 minHyd. volume

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.22

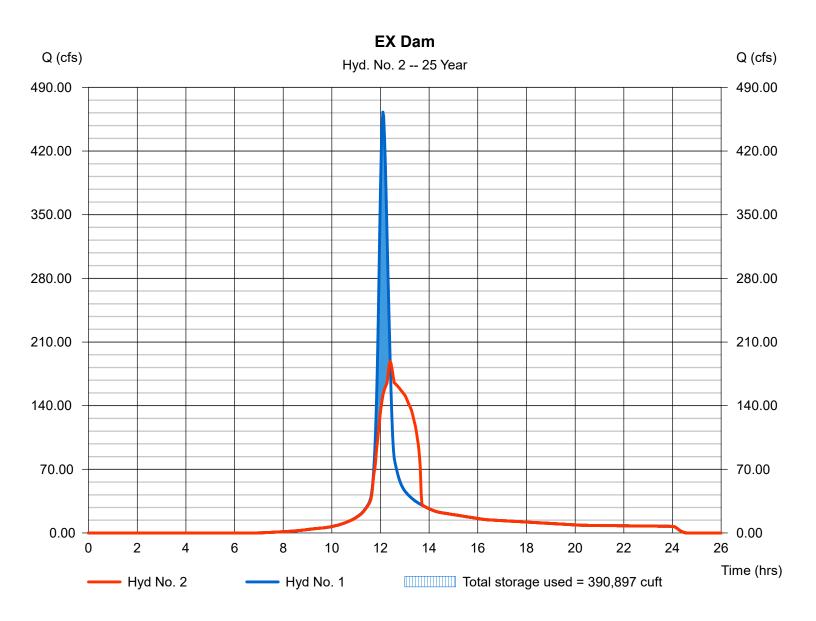

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	462.79	2	726	1,598,249				DA to Dam
2	Reservoir	188.75	2	744	1,598,191	1	260.23	390,897	EX Dam
3	SCS Runoff	56.70	2	730	226,814				DA to School Basin
4	Reservoir	33.06	2	746	226,806	3	273.90	63,633	EX School Basin
5	SCS Runoff	86.61	2	726	300,774				DA to New Basin
6	Combine	105.18	2	728	527,579	4, 5			Total to New Basin
7	Reservoir	2.670	2	1266	515,557	6	258.58	407,051	PR New Basin
8	SCS Runoff	273.90	2	726	949,184				EX DA to Knight Rd Culvert
9	SCS Runoff	184.64	2	726	638,819				PR DA to Knight Rd Culvert
10	Combine	444.90	2	728	2,774,184	2, 4, 8,			Total EX to Knight Rd Culvert
11	Reach	445.40	2	728	2,774,151	10			EX Knight Rd Culvert
12	Combine	338.77	2	728	2,752,567	2, 7, 9,			Total PR to Knight Rd Culvert
13	Reach	339.16	2	728	2,752,552	12			PR Knight Rd Culvert
14	SCS Runoff	209.86	2	734	953,392				DA to Culvert at Tracks
15	Combine	643.34	2	730	3,727,539	11, 14			Total EX to Culvert at Tracks
16	Combine	537.31	2	730	3,705,946	13, 14,			Total PR to Culvert at Tracks
Bro	okside Ave F	lood Stud	ly - New	Basin.gpv	v Return P	eriod: 25 \	/ear	Friday, Nov	v 18, 2022

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 1

DA to Dam

Hydrograph type	= SCS Runoff	Peak discharge	= 462.79 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 1,598,249 cuft
Drainage area	= 125.440 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.90 min
Total precip.	= 5.74 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

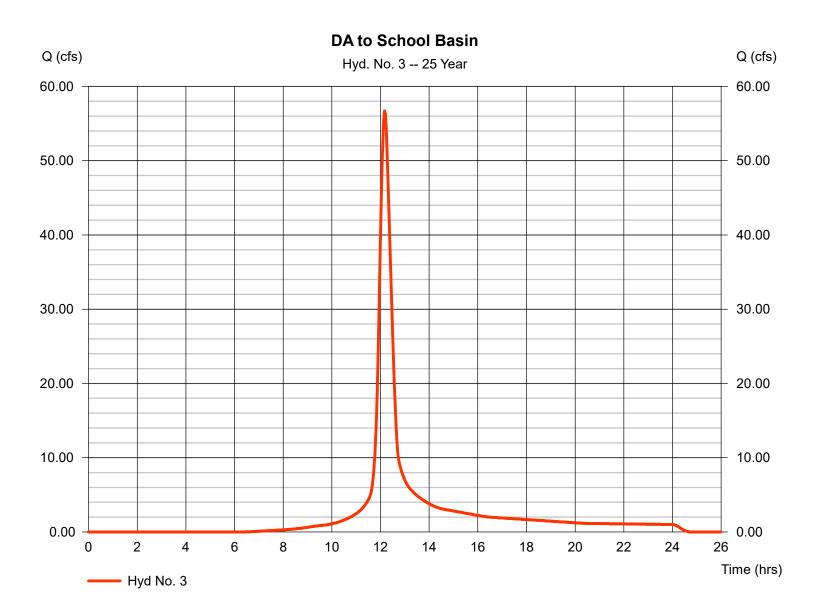

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 2

EX Dam

Hydrograph type	= Reservoir	Peak discharge	= 188.75 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.40 hrs
Time interval	= 2 min	Hyd. volume	= 1,598,191 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 260.23 ft
Reservoir name	= EX Dam	Max. Storage	= 390,897 cuft
		_	

Storage Indication method used.



Hydraflow Hydrographs by Intelisolve v9.22

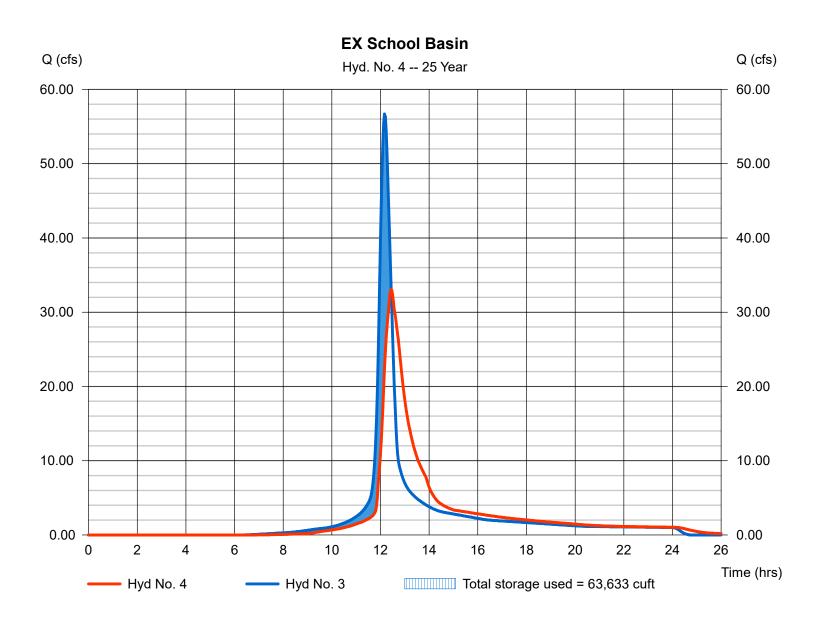
Hyd. No. 3

DA to School Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 56.70 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 226,814 cuft
Drainage area	= 17.130 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.50 min
Total precip.	= 5.74 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Friday, Nov 18, 2022

83

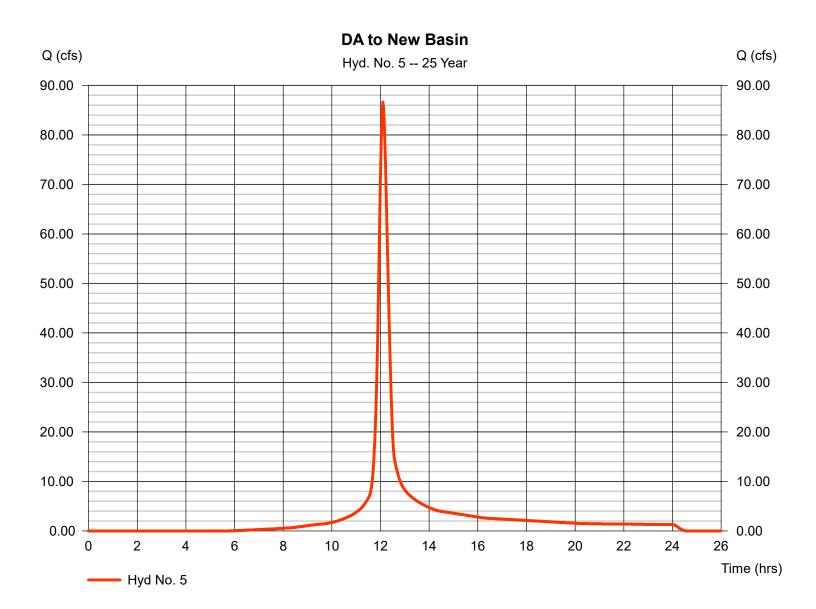

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 4

EX School Basin

Hydrograph type	= Reservoir	Peak discharge	= 33.06 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.43 hrs
Time interval	= 2 min	Hyd. volume	= 226,806 cuft
Inflow hyd. No.	= 3 - DA to School Basin	Max. Elevation	= 273.90 ft
Reservoir name	= EX School Basin	Max. Storage	= 63,633 cuft

Storage Indication method used.

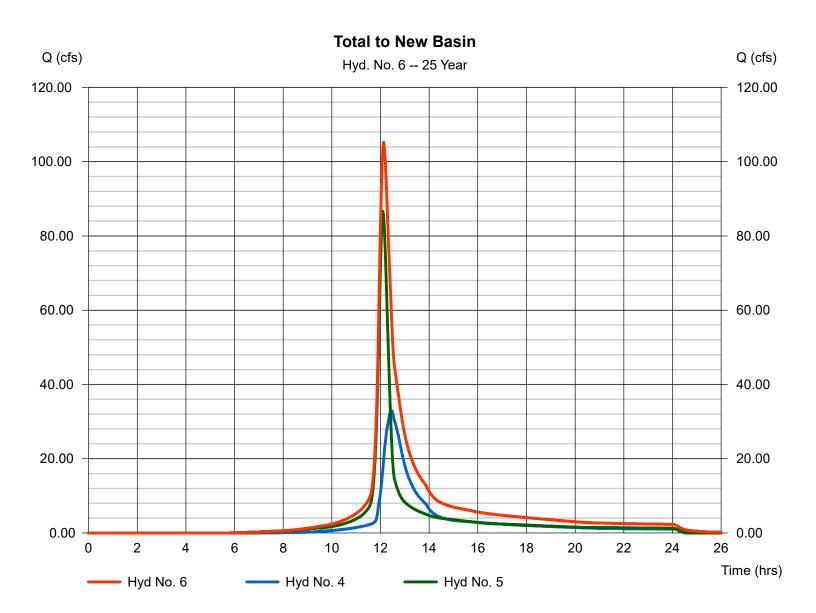


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 5

DA to New Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 86.61 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 300,774 cuft
Drainage area	= 21.140 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 20.20 min
Total precip.	= 5.74 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



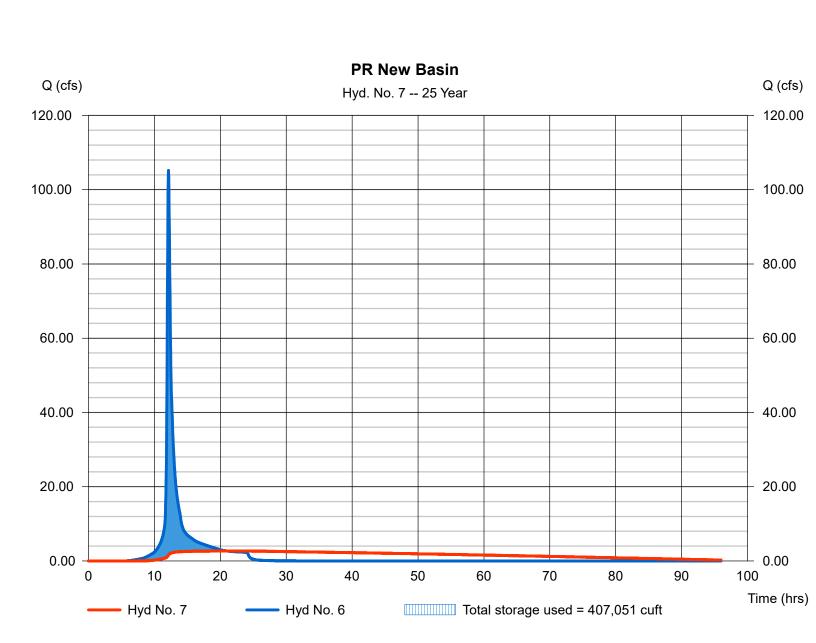
Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 6

Total to New Basin

Hydrograph type Storm frequency	= Combine = 25 yrs	Peak discharge Time to peak	= 105.18 cfs = 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 527,579 cuft
Inflow hyds.	= 4,5	Contrib. drain. area	a = 21.140 ac

86

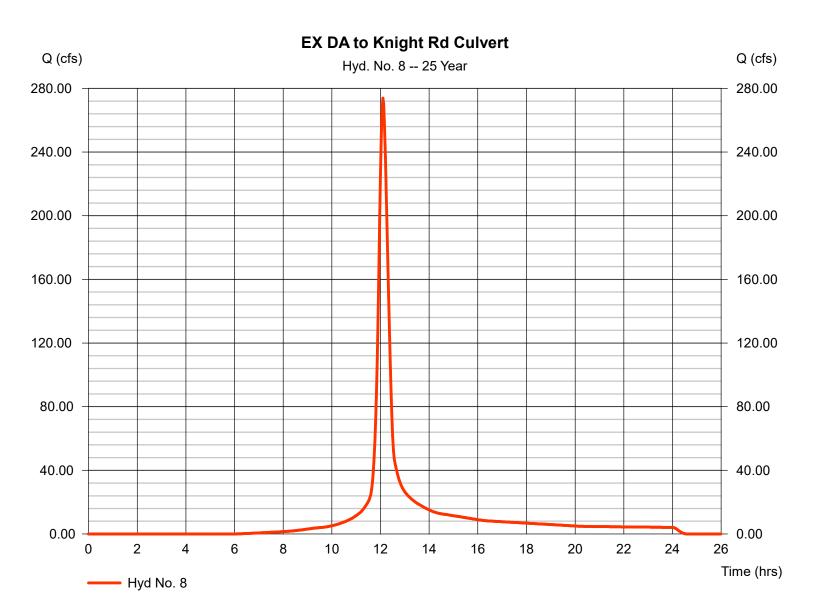

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 7

PR New Basin

Hydrograph type	= Reservoir	Peak discharge	= 2.670 cfs
Storm frequency	= 25 yrs	Time to peak	= 21.10 hrs
Time interval	= 2 min	Hyd. volume	= 515,557 cuft
Inflow hyd. No.	= 6 - Total to New Basin	Max. Elevation	= 258.58 ft
Reservoir name	= PR New Basin	Max. Storage	= 407,051 cuft

Storage Indication method used.



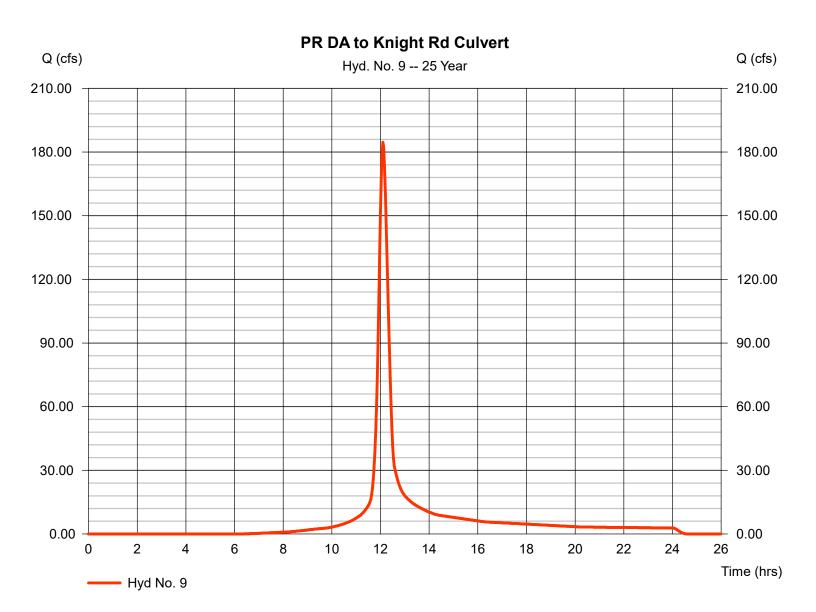
Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 8

EX DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 273.90 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 949,184 cuft
Drainage area	= 68.530 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 5.74 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Friday, Nov 18, 2022

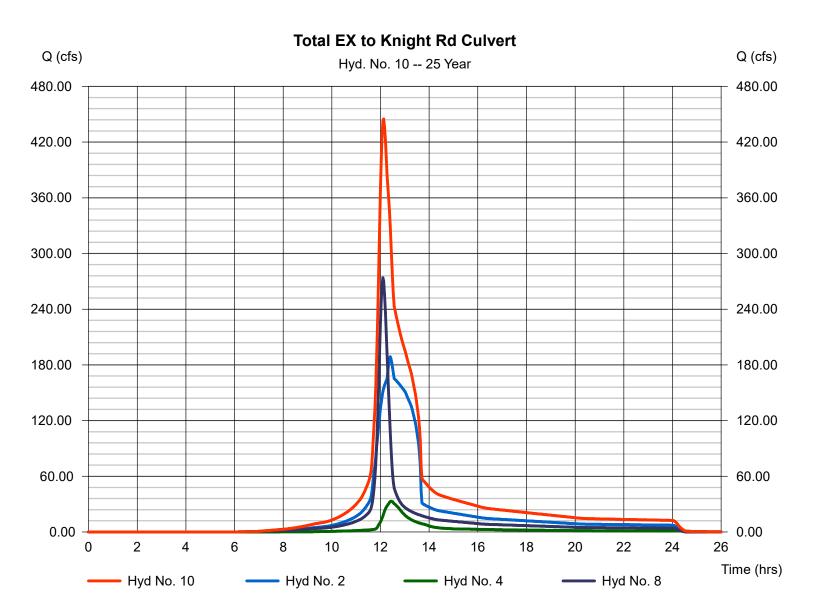

88

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 9

PR DA to Knight Rd Culvert

= SCS Runoff	Peak discharge	= 184.64 cfs
= 25 yrs	Time to peak	= 12.10 hrs
= 2 min	Hyd. volume	= 638,819 cuft
= 47.400 ac	Curve number	= 81
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 23.30 min
= 5.74 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	= 25 yrs = 2 min = 47.400 ac = 0.0 % = TR55 = 5.74 in	= 25 yrsTime to peak= 2 minHyd. volume= 47.400 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 5.74 inDistribution

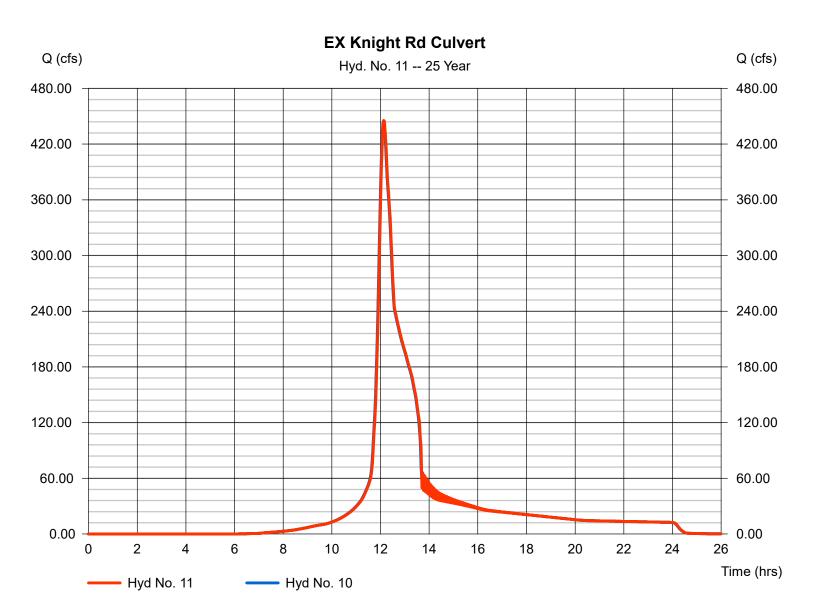


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 10

Total EX to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 444.90 cfs
Storm frequency	= 25 yrs	Time to peak = 12.13 hrs
Time interval	= 2 min	Hyd. volume = 2,774,184 cuft
Inflow hyds.	= 2, 4, 8	Contrib. drain. area = 68.530 ac

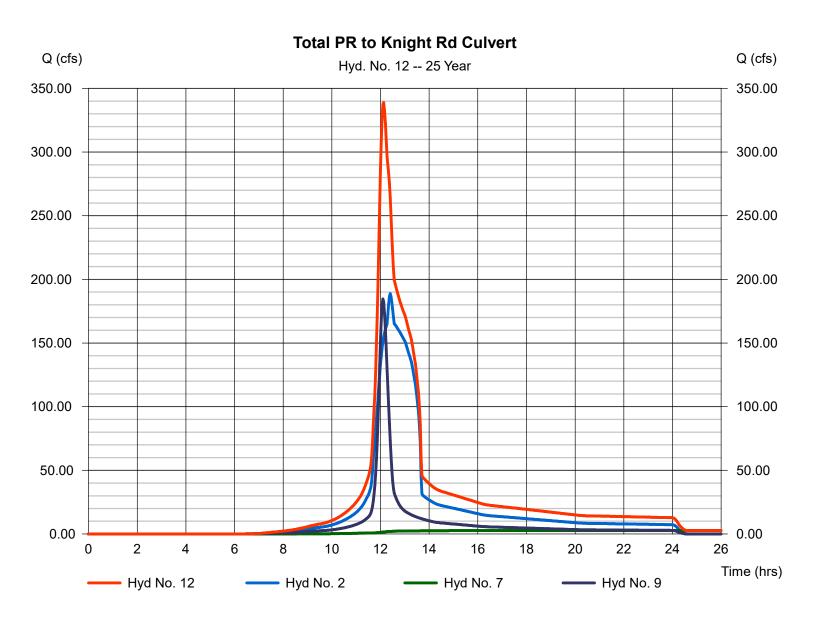

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 11

EX Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 445.40 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 2,774,151 cuft
Inflow hyd. No.	= 10 - Total EX to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 30.29 ft/s	Routing coeff.	= 1.9618

Modified Att-Kin routing method used.



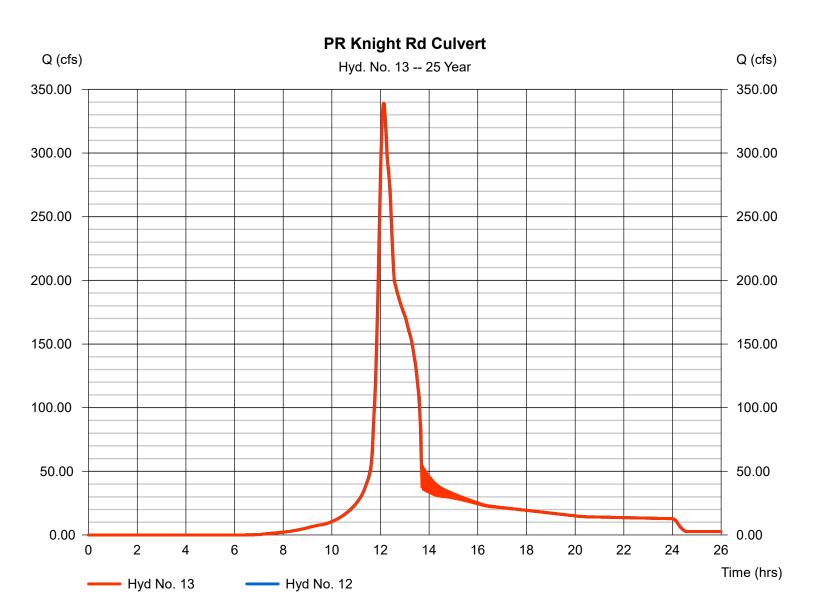
Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 12

Total PR to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 338.77 cfs
Storm frequency	= 25 yrs	Time to peak = 12.13 hrs
Time interval	= 2 min	Hyd. volume = $2,752,567$ cuft
Inflow hyds.	= 2, 7, 9	Contrib. drain. area = 47.400 ac

92

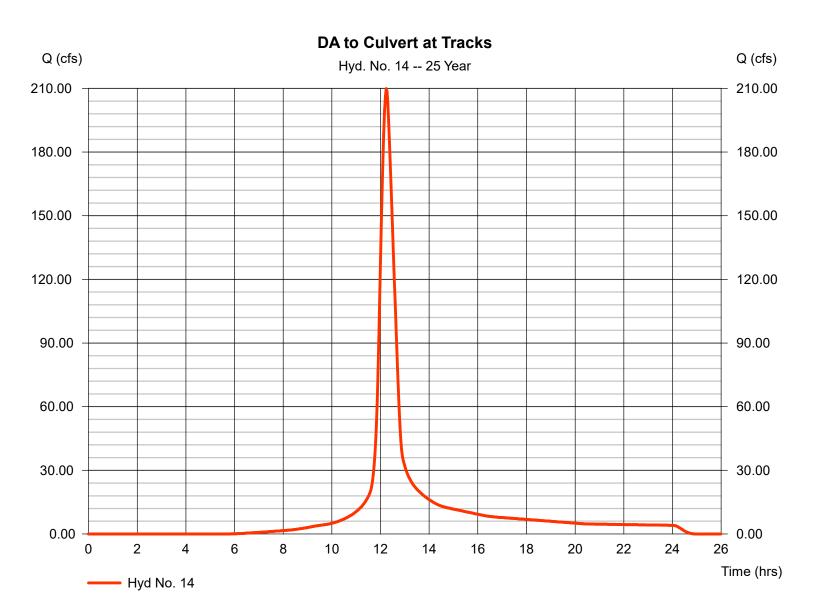

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 13

PR Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 339.16 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 2,752,552 cuft
Inflow hyd. No.	= 12 - Total PR to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 27.48 ft/s	Routing coeff.	= 1.9580

Modified Att-Kin routing method used.

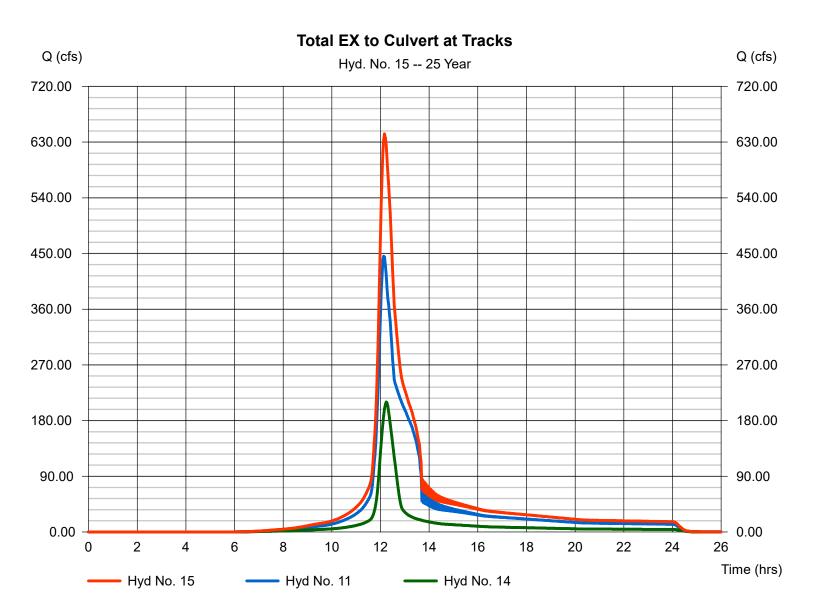

93

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 14

DA to Culvert at Tracks

Hydrograph type	= SCS Runoff	Peak discharge	= 209.86 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 953,392 cuft
Drainage area	= 68.990 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.30 min
Total precip.	= 5.74 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

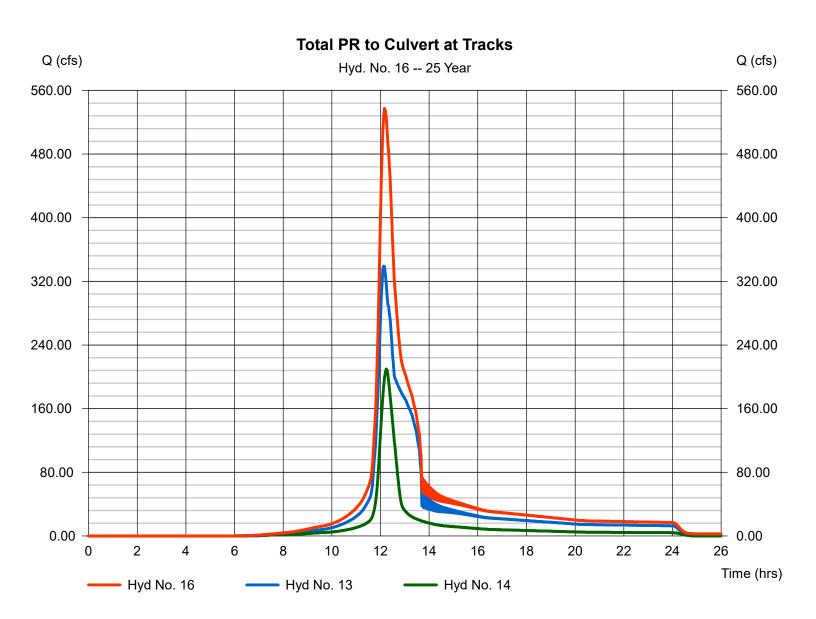


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 15

Total EX to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 643.34 cfs
Storm frequency	= 25 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = $3,727,539$ cuft
Inflow hyds.	= 11, 14	Contrib. drain. area = 68.990 ac


95

Hydraflow Hydrographs by Intelisolve v9.22

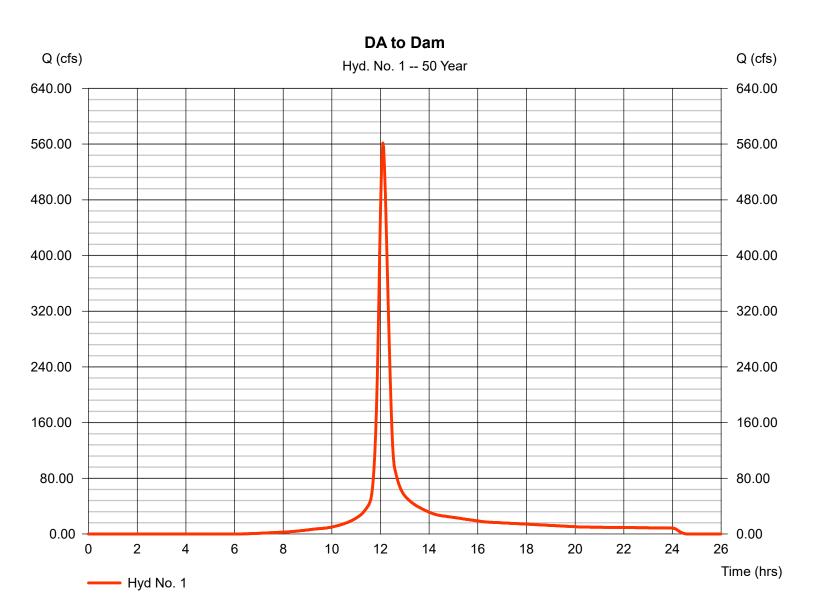
Hyd. No. 16

Total PR to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 537.31 cfs
Storm frequency	= 25 yrs	Time to peak = 12.17 hrs
Time interval	= 2 min	Hyd. volume = 3,705,946 cuft
Inflow hyds.	= 13, 14	Contrib. drain. area = 68.990 ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.22

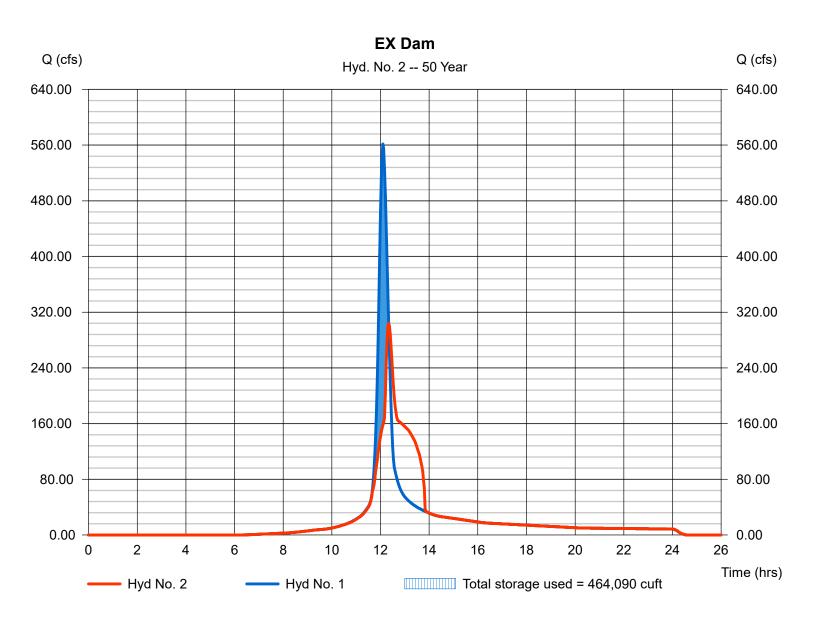

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	561.52	2	726	1,943,202				DA to Dam
2	Reservoir	303.95	2	740	1,943,144	1	260.80	464,090	EX Dam
3	SCS Runoff	68.29	2	730	274,011				DA to School Basin
4	Reservoir	46.22	2	744	274,003	3	274.19	72,104	EX School Basin
5	SCS Runoff	103.47	2	726	361,114				DA to New Basin
6	Combine	126.96	2	728	635,117	4, 5			Total to New Basin
7	Reservoir	7.414	2	920	619,931	6	259.20	445,227	PR New Basin
8	SCS Runoff	328.43	2	726	1,143,120				EX DA to Knight Rd Culvert
9	SCS Runoff	222.25	2	726	771,748				PR DA to Knight Rd Culvert
10	Combine	546.15	2	736	3,360,269	2, 4, 8,			Total EX to Knight Rd Culvert
11	Reach	556.53	2	738	3,360,231	10			EX Knight Rd Culvert
12	Combine	437.54	2	738	3,334,822	2, 7, 9,			Total PR to Knight Rd Culvert
13	Reach	448.83	2	738	3,334,803	12			PR Knight Rd Culvert
14	SCS Runoff	250.96	2	734	1,144,656				DA to Culvert at Tracks
15	Combine	798.74	2	738	4,504,890	11, 14			Total EX to Culvert at Tracks
16	Combine	691.03	2	738	4,479,459	13, 14,			Total PR to Culvert at Tracks
Bro	okside Ave Fl	lood Stud	y - New	Basin.gov	v Return P	eriod: 50 \	/ear	Friday, Nov	/ 18. 2022

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 1

DA to Dam

Hydrograph type Storm frequency	= SCS Runoff = 50 yrs	Peak discharge Time to peak	= 561.52 cfs = 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 1,943,202 cuft
Drainage area	= 125.440 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.90 min
Total precip.	= 6.57 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

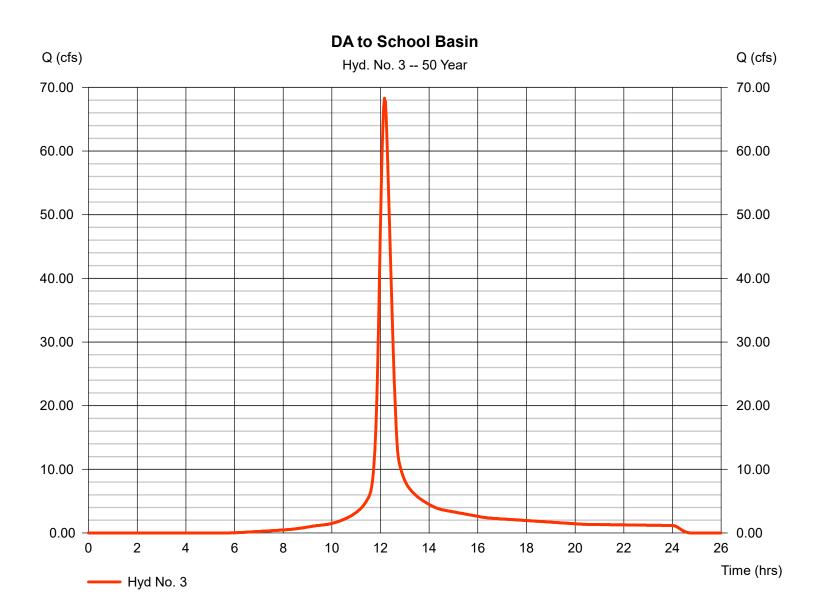

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 2

EX Dam

Hydrograph type	= Reservoir	Peak discharge	= 303.95 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 1,943,144 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 260.80 ft
Reservoir name	= EX Dam	Max. Storage	= 464,090 cuft

Storage Indication method used.

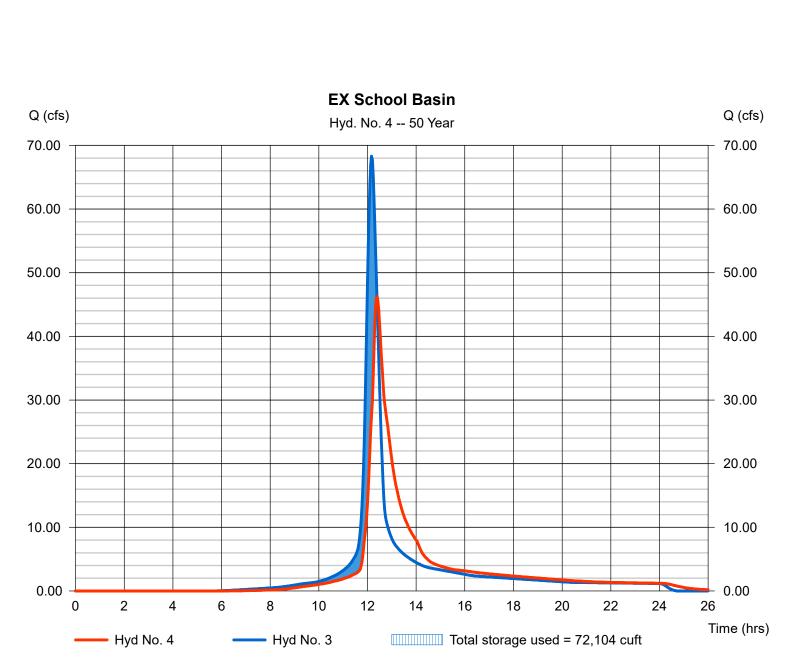


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 3

DA to School Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 68.29 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 274,011 cuft
Drainage area	= 17.130 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.50 min
Total precip.	= 6.57 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

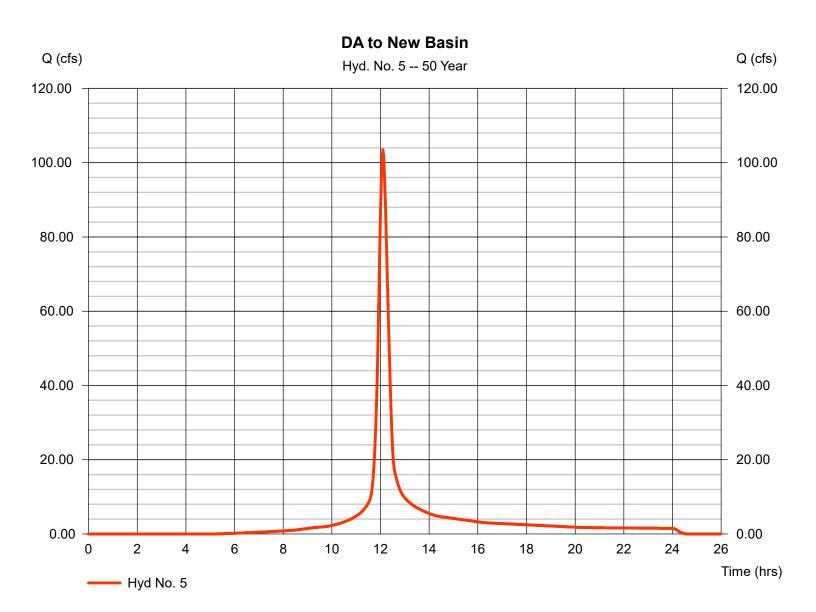

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 4

EX School Basin

Hydrograph type	= Reservoir	Peak discharge	= 46.22 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.40 hrs
Time interval	= 2 min	Hyd. volume	= 274,003 cuft
Inflow hyd. No.	= 3 - DA to School Basin	Max. Elevation	= 274.19 ft
Reservoir name	= EX School Basin	Max. Storage	= 72,104 cuft

Storage Indication method used.

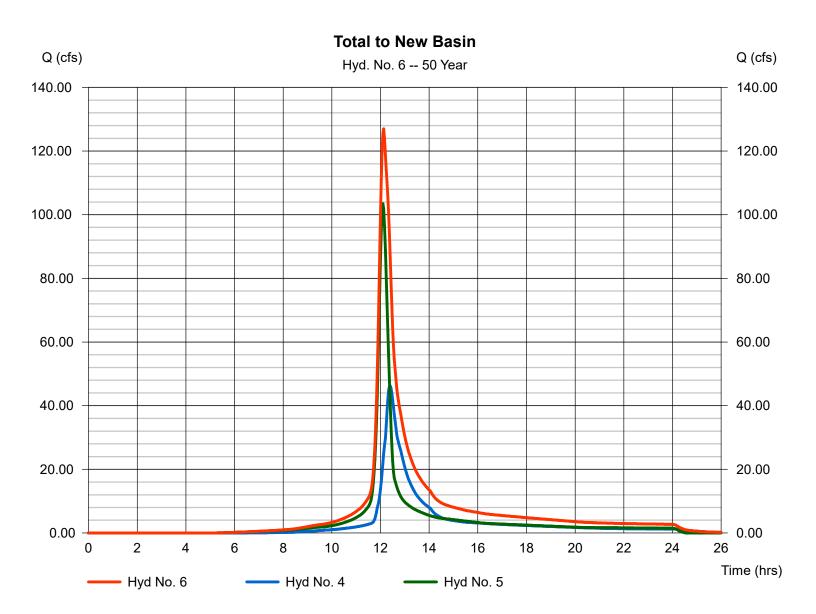


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 5

DA to New Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 103.47 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 361,114 cuft
Drainage area	= 21.140 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 20.20 min
Total precip.	= 6.57 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs by Intelisolve v9.22

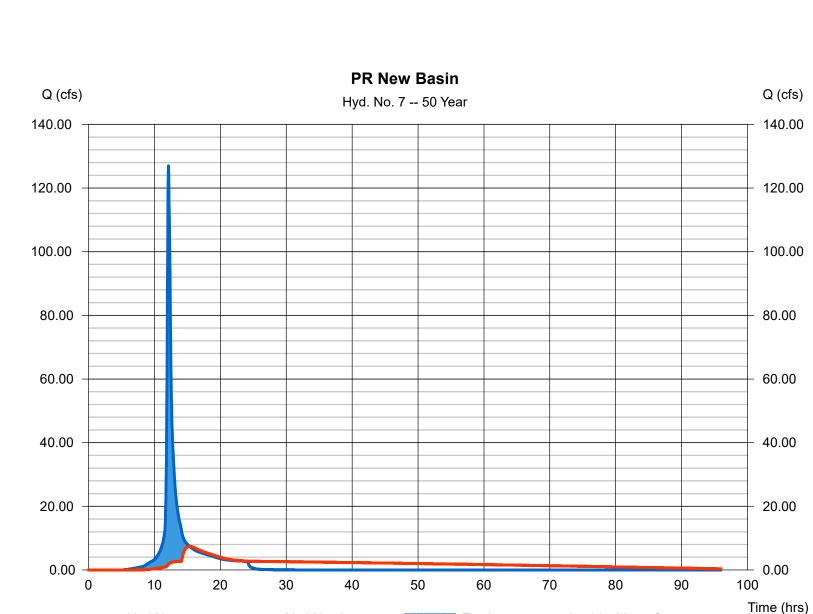
Hyd. No. 6

Total to New Basin

Hydrograph type	= Combine	Peak discharge =	= 126.96 cfs
Storm frequency	= 50 yrs	Time to peak =	= 12.13 hrs
Time interval	= 2 min	Hyd. volume =	= 635,117 cuft
Inflow hyds.	= 4,5	Contrib. drain. area =	= 21.140 ac

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 7

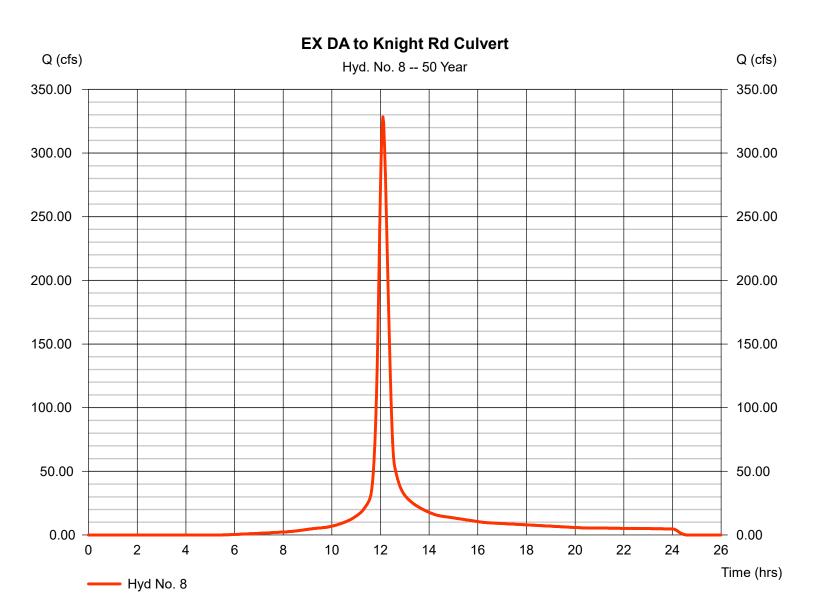

PR New Basin

Hydrograph type	= Reservoir	Peak discharge	= 7.414 cfs
Storm frequency	= 50 yrs	Time to peak	= 15.33 hrs
Time interval	= 2 min	Hyd. volume	= 619,931 cuft
Inflow hyd. No.	= 6 - Total to New Basin	Max. Elevation	= 259.20 ft
Reservoir name	= PR New Basin	Max. Storage	= 445,227 cuft

Storage Indication method used.

Hyd No. 7

Hyd No. 6

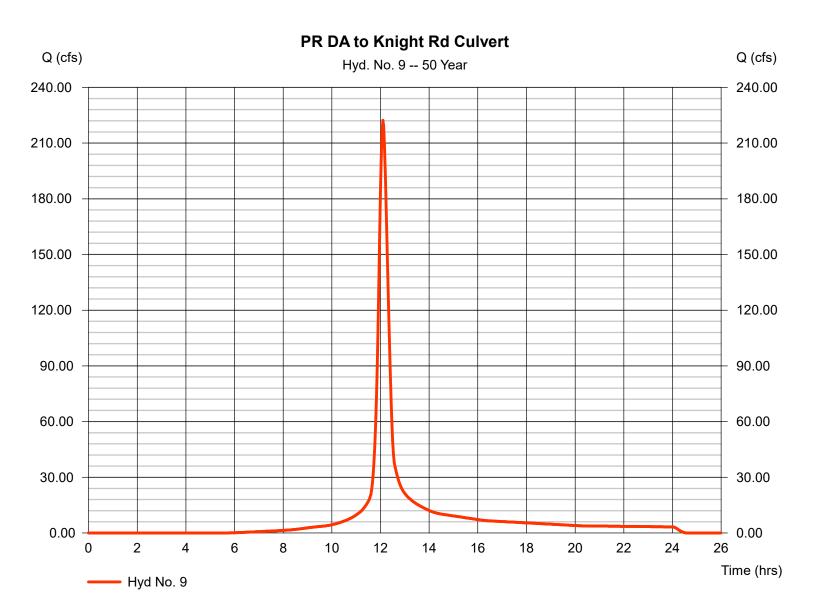

Total storage used = 445,227 cuft

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 8

EX DA to Knight Rd Culvert

= SCS Runoff	Peak discharge	= 328.43 cfs
= 50 yrs	Time to peak	= 12.10 hrs
= 2 min	Hyd. volume	= 1,143,120 cuft
= 68.530 ac	Curve number	= 82
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 23.30 min
= 6.57 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	= 50 yrs = 2 min = 68.530 ac = 0.0 % = TR55 = 6.57 in	= 50 yrsTime to peak= 2 minHyd. volume= 68.530 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 6.57 inDistribution

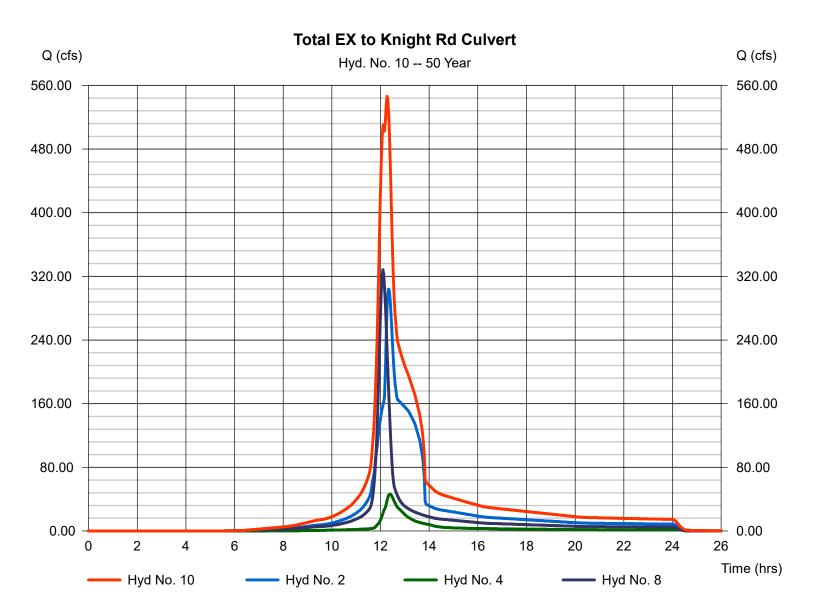


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 9

PR DA to Knight Rd Culvert

222.25 cfs
12.10 hrs
771,748 cuft
31
) ft
23.30 min
Гуре II
184
12 77 3 23 Ty

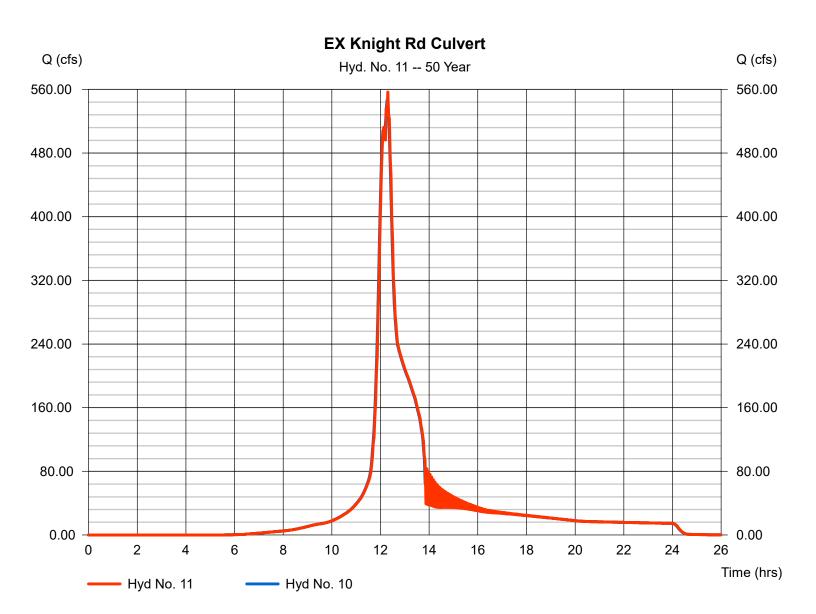


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 10

Total EX to Knight Rd Culvert

Combine	Peak discharge	= 546.15 cfs
= 50 yrs	Time to peak	= 12.27 hrs
2 min	Hyd. volume	= 3,360,269 cuft
= 2, 4, 8	Contrib. drain. area	= 68.530 ac
=	50 yrs 2 min	50 yrsTime to peak2 minHyd. volume

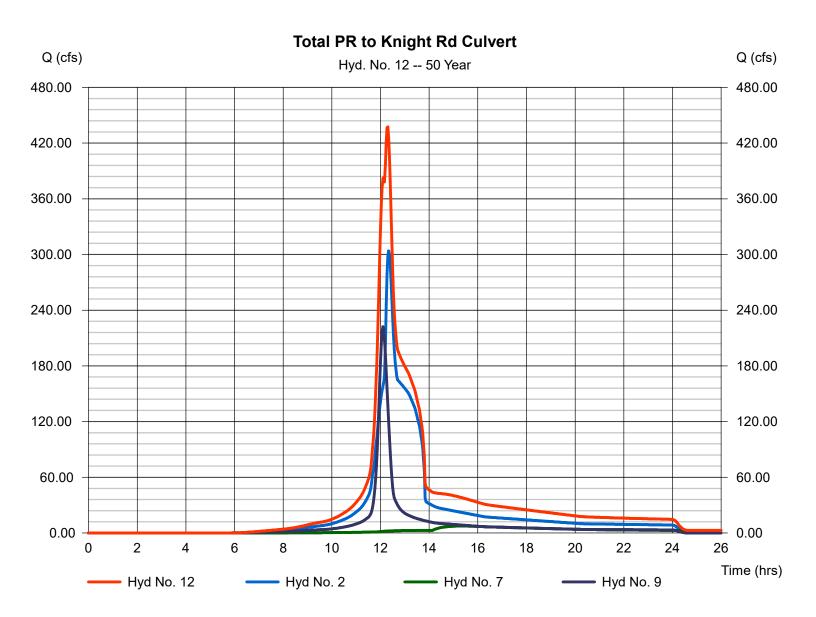

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 11

EX Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 556.53 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 3,360,231 cuft
Inflow hyd. No.	= 10 - Total EX to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 32.59 ft/s	Routing coeff.	= 1.9645
0		0	

Modified Att-Kin routing method used.

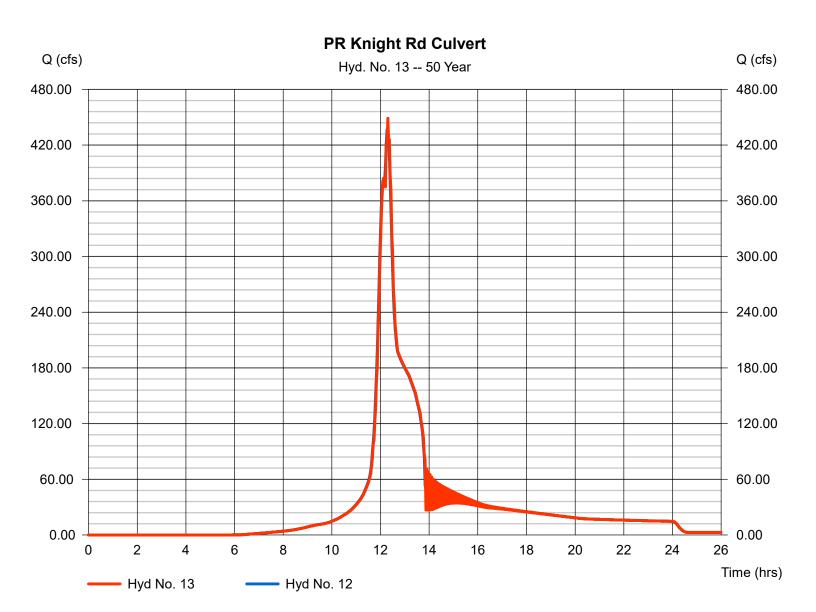


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 12

Total PR to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 437.54 cfs
Storm frequency	= 50 yrs	Time to peak = 12.30 hrs
Time interval	= 2 min	Hyd. volume = 3,334,822 cuft
Inflow hyds.	= 2, 7, 9	Contrib. drain. area = 47.400 ac
innen nyaér	_; ; ; ; ;	

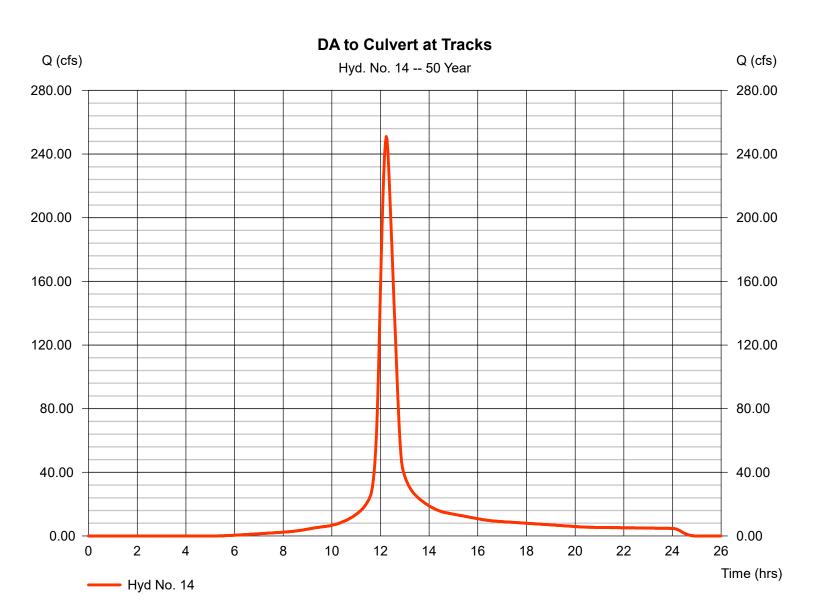

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 13

PR Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 448.83 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 3,334,803 cuft
Inflow hyd. No.	= 12 - Total PR to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 30.11 ft/s	Routing coeff.	= 1.9616

Modified Att-Kin routing method used.

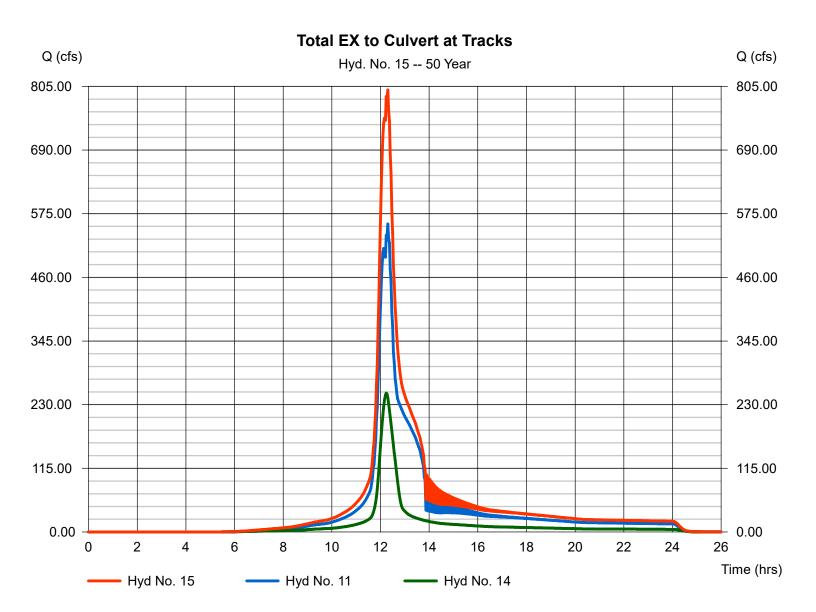

110

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 14

DA to Culvert at Tracks

Hydrograph type	= SCS Runoff	Peak discharge	= 250.96 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 1,144,656 cuft
Drainage area	= 68.990 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.30 min
Total precip.	= 6.57 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

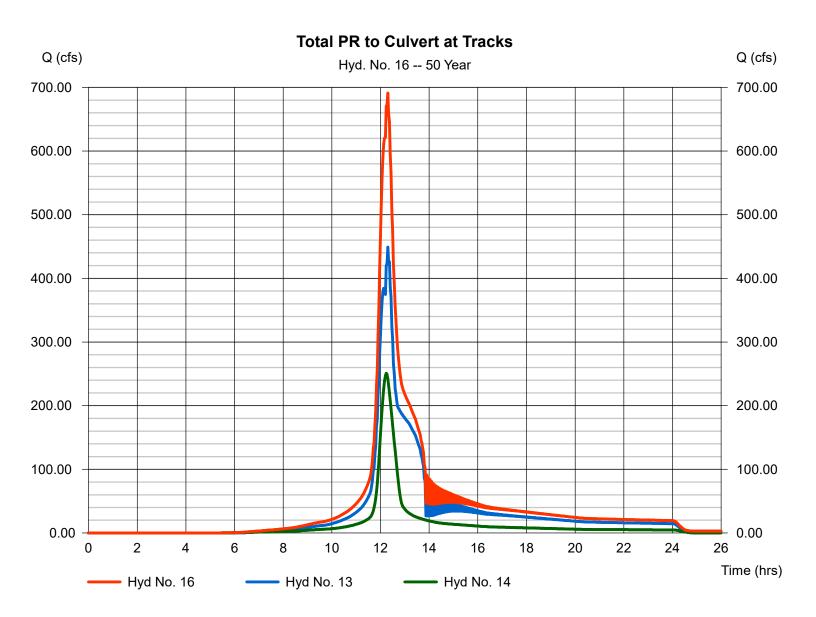


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 15

Total EX to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 798.74 cfs
Storm frequency	= 50 yrs	Time to peak = 12.30 hrs
Time interval	= 2 min	Hyd. volume = $4,504,890$ cuft
Inflow hyds.	= 11, 14	Contrib. drain. area = 68.990 ac



Hydraflow Hydrographs by Intelisolve v9.22

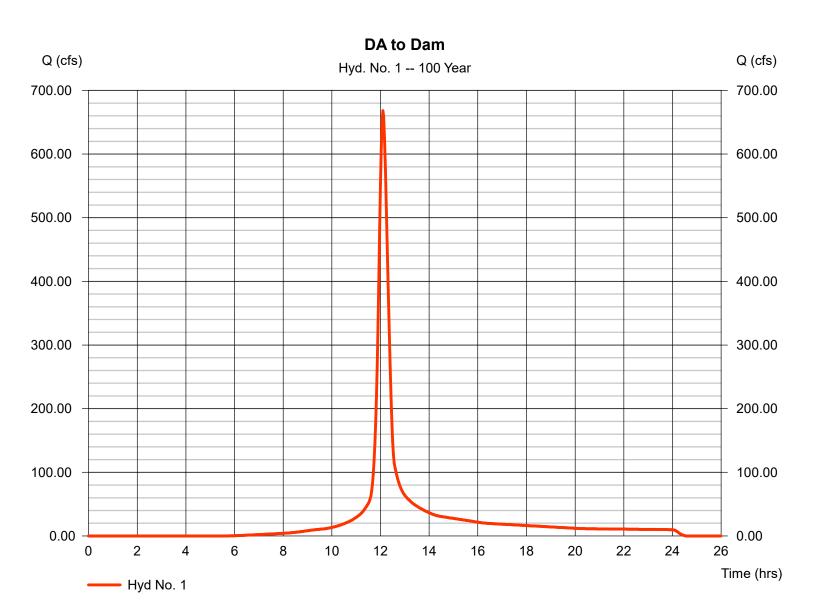
Hyd. No. 16

Total PR to Culvert at Tracks

= Combine	Peak discharge = 691.03 cfs	
= 50 yrs	Time to peak = 12.30 hrs	
= 2 min	Hyd. volume = 4,479,459 cuft	i
= 13, 14	Contrib. drain. area = 68.990 ac	
	= 50 yrs = 2 min	= 50 yrs Time to peak = 12.30 hrs = 2 min Hyd. volume = 4,479,459 cuft

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.22

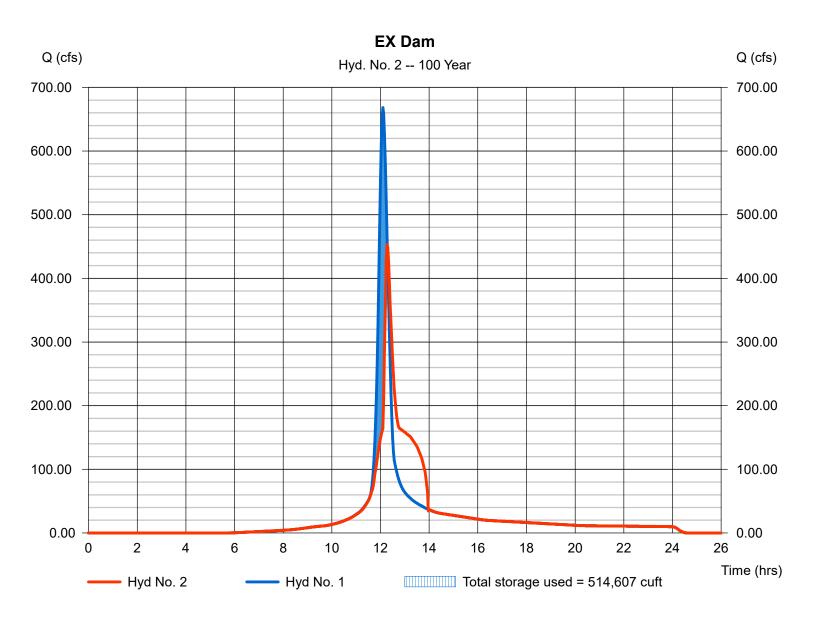

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	668.28	2	726	2,320,737				DA to Dam
2	Reservoir	452.95	2	736	2,320,678	1	261.19	514,607	EX Dam
3	SCS Runoff	80.79	2	730	325,492				DA to School Basin
4	Reservoir	62.91	2	740	325,484	3	274.36	78,068	EX School Basin
5	SCS Runoff	121.57	2	726	426,726				DA to New Basin
6	Combine	149.16	2	728	752,209	4, 5			Total to New Basin
7	Reservoir	20.67	2	812	736,819	6	259.48	462,694	PR New Basin
8	SCS Runoff	387.07	2	726	1,354,321				EX DA to Knight Rd Culvert
9	SCS Runoff	262.76	2	726	916,743				PR DA to Knight Rd Culvert
10	Combine	779.64	2	736	4,000,486	2, 4, 8,			Total EX to Knight Rd Culvert
11	Reach	803.93	2	736	4,000,450	10			EX Knight Rd Culvert
12	Combine	637.99	2	736	3,974,245	2, 7, 9,			Total PR to Knight Rd Culvert
13	Reach	659.54	2	736	3,974,221	12			PR Knight Rd Culvert
14	SCS Runoff	295.14	2	734	1,352,631				DA to Culvert at Tracks
15	Combine	1096.75	2	736	5,353,085	11, 14			Total EX to Culvert at Tracks
16	Combine	952.36	2	736	5,326,852	13, 14,			Total PR to Culvert at Tracks
Bro	okside Ave F	lood Stud	y - New	Basin.gpv	v Return P	eriod: 100	Year	Friday, Nov	/ 18, 2022

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 1

DA to Dam

Hydrograph type	= SCS Runoff	Peak discharge	= 668.28 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 2,320,737 cuft
Drainage area	= 125.440 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.90 min
Total precip.	= 7.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

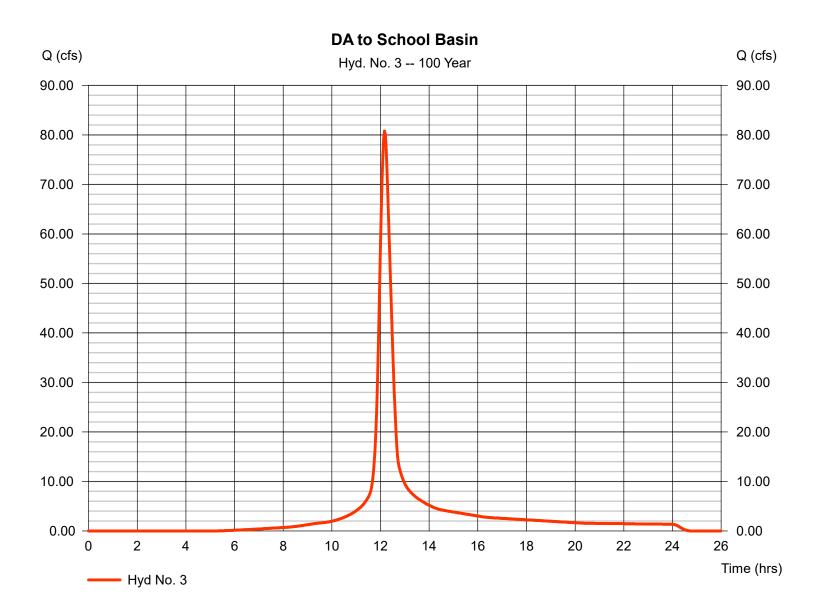

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 2

EX Dam

Hydrograph type	= Reservoir	Peak discharge	= 452.95 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 2,320,678 cuft
Inflow hyd. No.	= 1 - DA to Dam	Max. Elevation	= 261.19 ft
Reservoir name	= EX Dam	Max. Storage	= 514,607 cuft

Storage Indication method used.

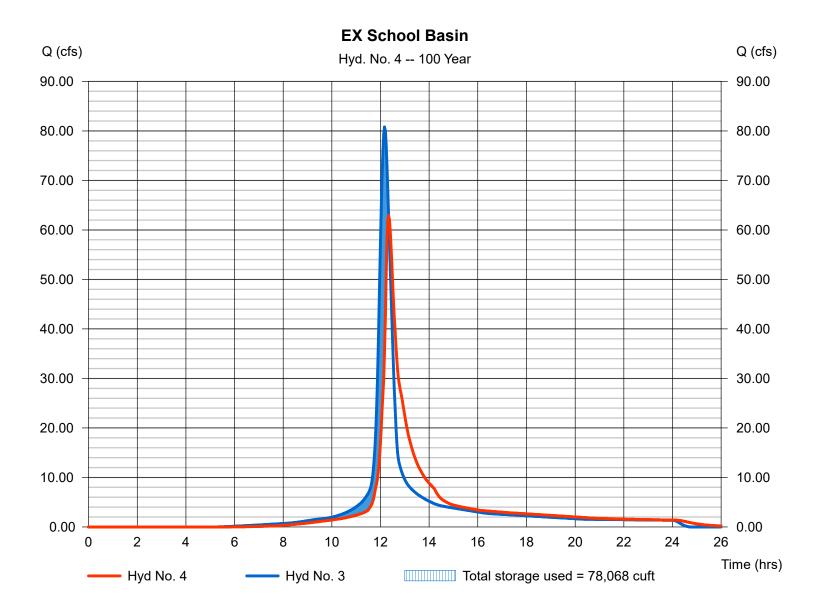

116

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 3

DA to School Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 80.79 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 325,492 cuft
Drainage area	= 17.130 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.50 min
Total precip.	= 7.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

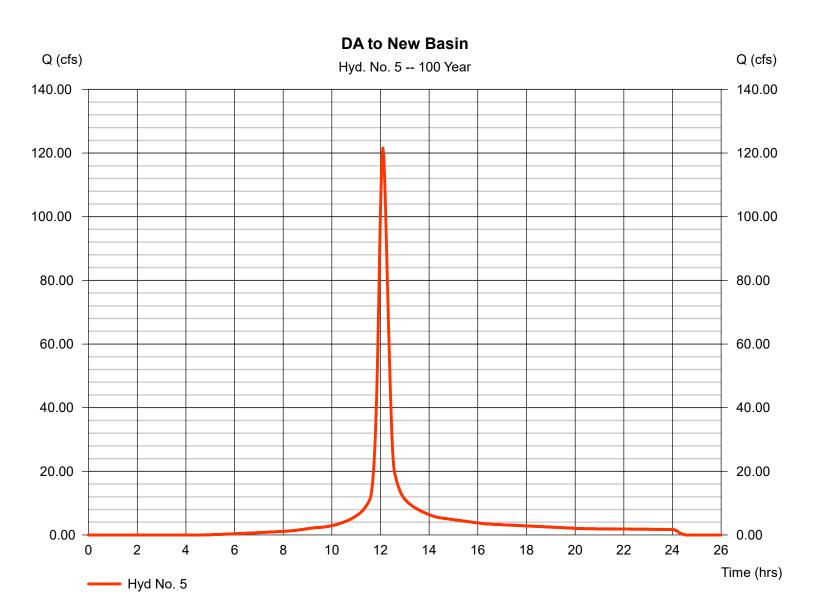

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 4

EX School Basin

Hydrograph type	= Reservoir	Peak discharge	= 62.91 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 325,484 cuft
Inflow hyd. No.	= 3 - DA to School Basin	Max. Elevation	= 274.36 ft
Reservoir name	= EX School Basin	Max. Storage	= 78,068 cuft

Storage Indication method used.

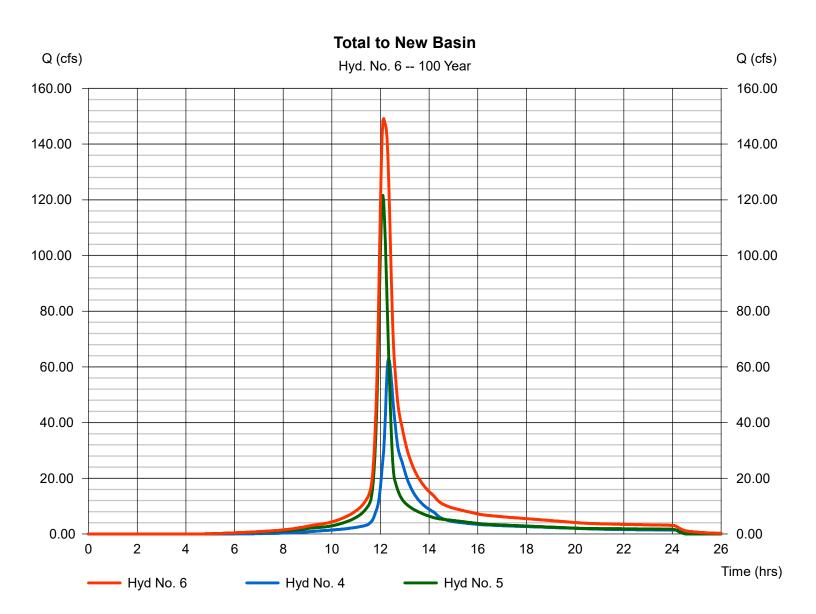


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 5

DA to New Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 121.57 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 426,726 cuft
Drainage area	= 21.140 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 20.20 min
Total precip.	= 7.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

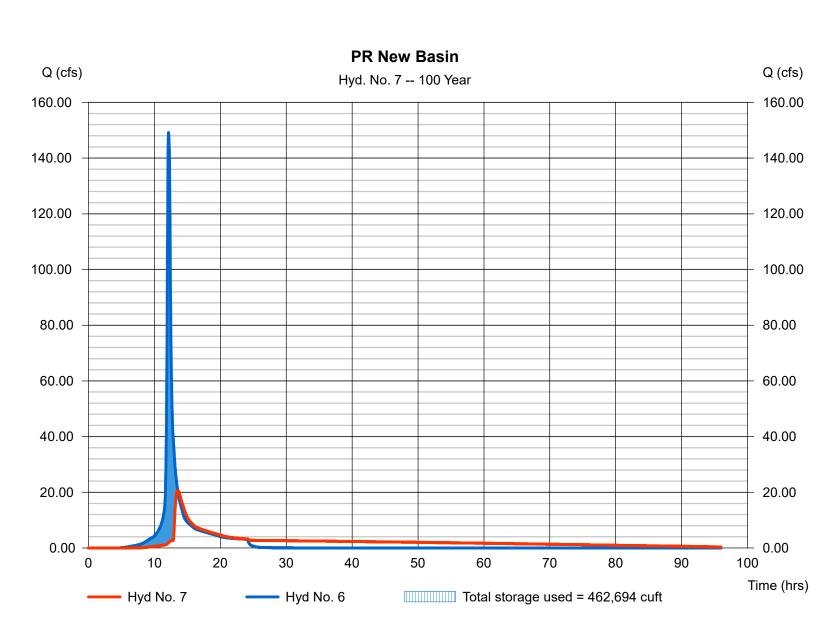

119

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 6

Total to New Basin

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 149.16 cfs = 12.13 hrs
Time interval	$= 2 \min$	Hyd. volume	= 752,209 cuft
Inflow hyds.	= 4,5	Contrib. drain. area	a = 21.140 ac

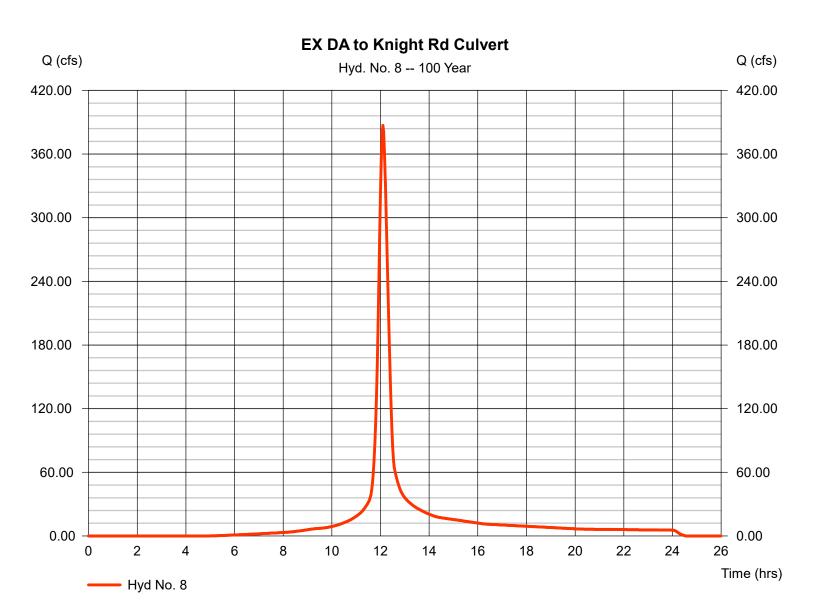

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 7

PR New Basin

= Reservoir	Peak discharge	= 20.67 cfs
= 100 yrs	Time to peak	= 13.53 hrs
= 2 min	Hyd. volume	= 736,819 cuft
= 6 - Total to New Basin	Max. Elevation	= 259.48 ft
= PR New Basin	Max. Storage	= 462,694 cuft
	= 100 yrs = 2 min = 6 - Total to New Basin	= 100 yrsTime to peak= 2 minHyd. volume= 6 - Total to New BasinMax. Elevation

Storage Indication method used.

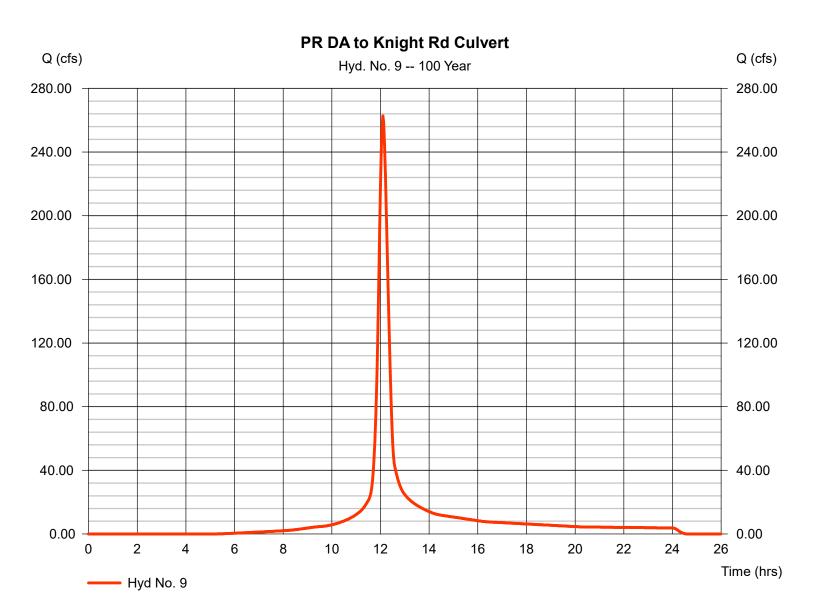


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 8

EX DA to Knight Rd Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 387.07 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 1,354,321 cuft
Drainage area	= 68.530 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 23.30 min
Total precip.	= 7.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

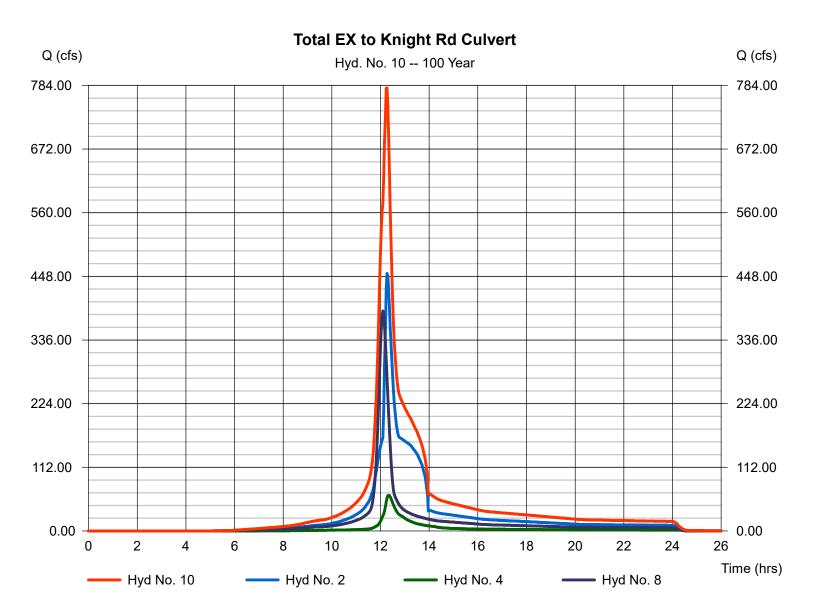


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 9

PR DA to Knight Rd Culvert

= SCS Runoff	Peak discharge	= 262.76 cfs
= 100 yrs	Time to peak	= 12.10 hrs
= 2 min	Hyd. volume	= 916,743 cuft
= 47.400 ac	Curve number	= 81
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 23.30 min
= 7.46 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	= 100 yrs = 2 min = 47.400 ac = 0.0 % = TR55 = 7.46 in	= 100 yrsTime to peak= 2 minHyd. volume= 47.400 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 7.46 inDistribution

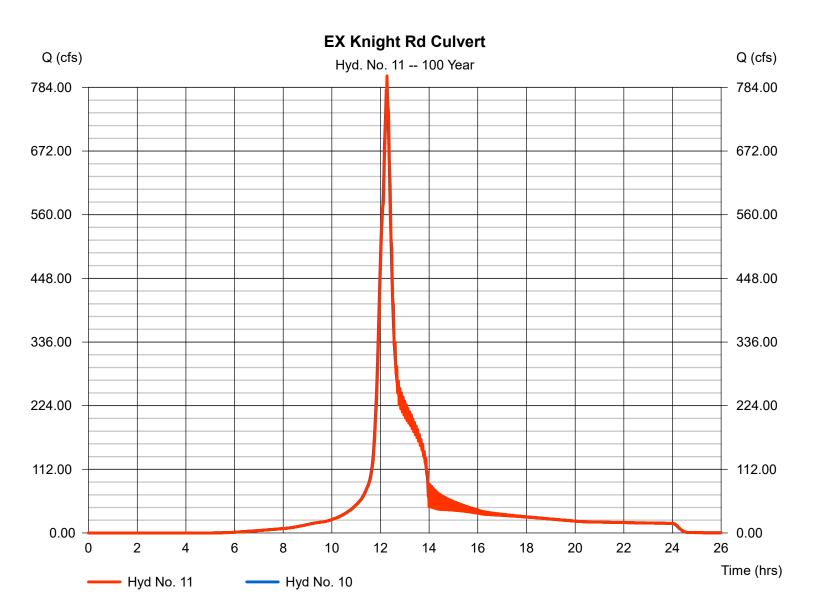


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 10

Total EX to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 779.64 cfs
Storm frequency	= 100 yrs	Time to peak = 12.27 hrs
Time interval	= 2 min	Hyd. volume = $4,000,486$ cuft
Inflow hyds.	= 2, 4, 8	Contrib. drain. area = 68.530 ac

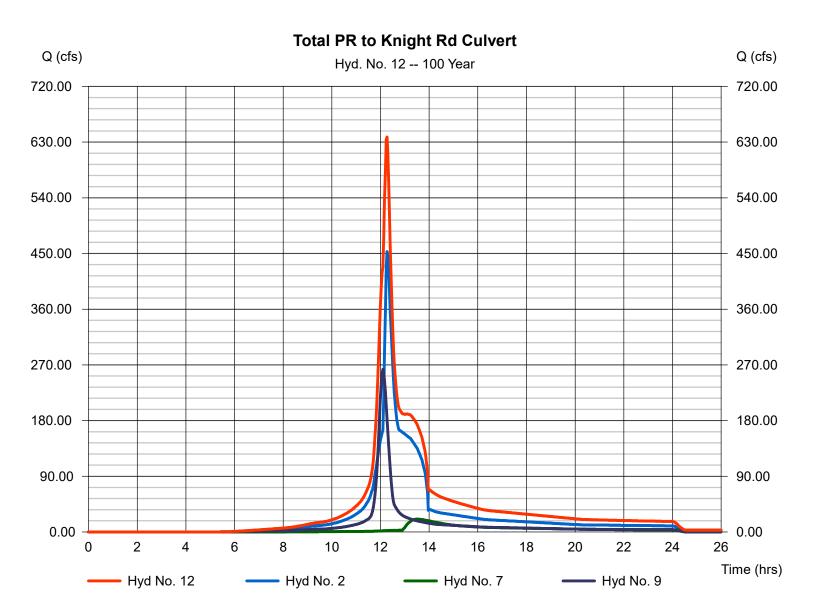

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 11

EX Knight Rd Culvert

Hydrograph type Storm frequency	= Reach = 100 yrs	Peak discharge Time to peak	= 803.93 cfs = 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 4,000,450 cuft
Inflow hyd. No.	= 10 - Total EX to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 37.01 ft/s	Routing coeff.	= 1.9687

Modified Att-Kin routing method used.

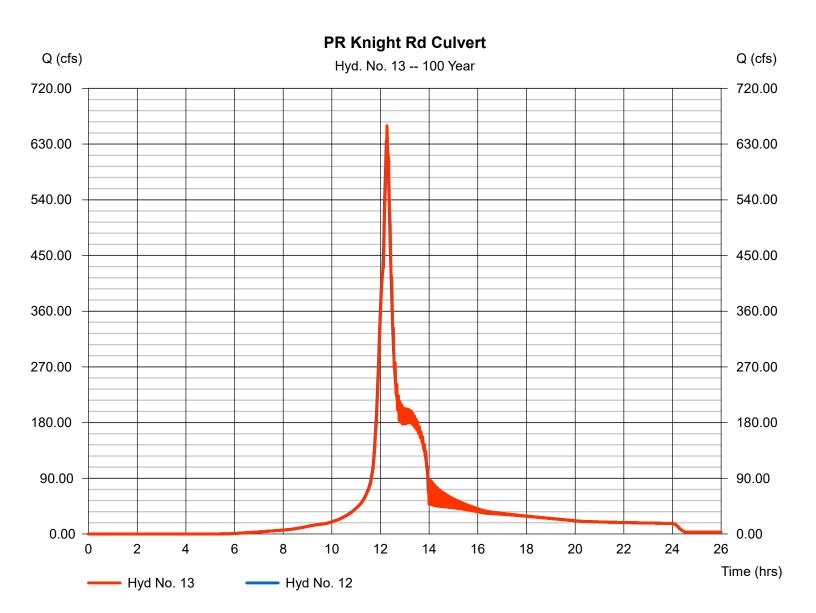


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 12

Total PR to Knight Rd Culvert

Hydrograph type	= Combine	Peak discharge = 637.99 cfs
Storm frequency	= 100 yrs	Time to peak = 12.27 hrs
Time interval	= 2 min	Hyd. volume = 3,974,245 cuft
Inflow hyds.	= 2, 7, 9	Contrib. drain. area = 47.400 ac

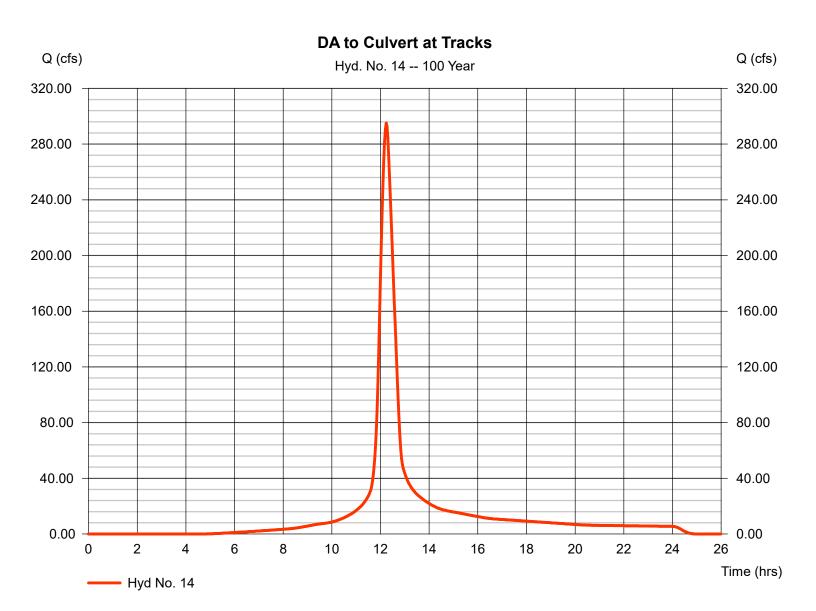

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 13

PR Knight Rd Culvert

Hydrograph type	= Reach	Peak discharge	= 659.54 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 3,974,221 cuft
Inflow hyd. No.	= 12 - Total PR to Knight Rd Culvert	Section type	= Rectangular
Reach length	= 55.0 ft	Channel slope	= 5.7 %
Manning's n	= 0.013	Bottom width	= 8.0 ft
Side slope	= 0.0:1	Max. depth	= 2.7 ft
Rating curve x	= 6.806	Rating curve m	= 1.556
Ave. velocity	= 34.45 ft/s	Routing coeff.	= 1.9664

Modified Att-Kin routing method used.

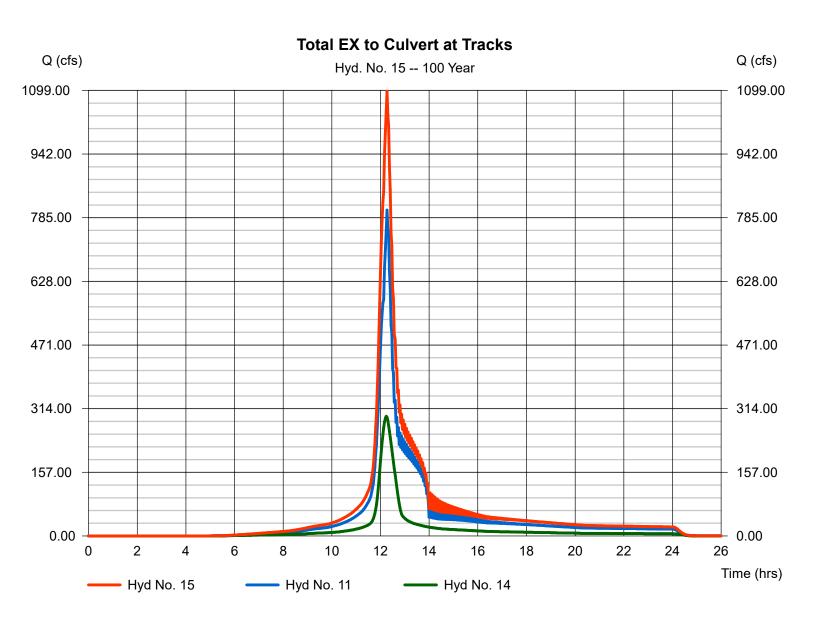


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 14

DA to Culvert at Tracks

Hydrograph type	= SCS Runoff	Peak discharge	= 295.14 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 1,352,631 cuft
Drainage area	= 68.990 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.30 min
Total precip.	= 7.46 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

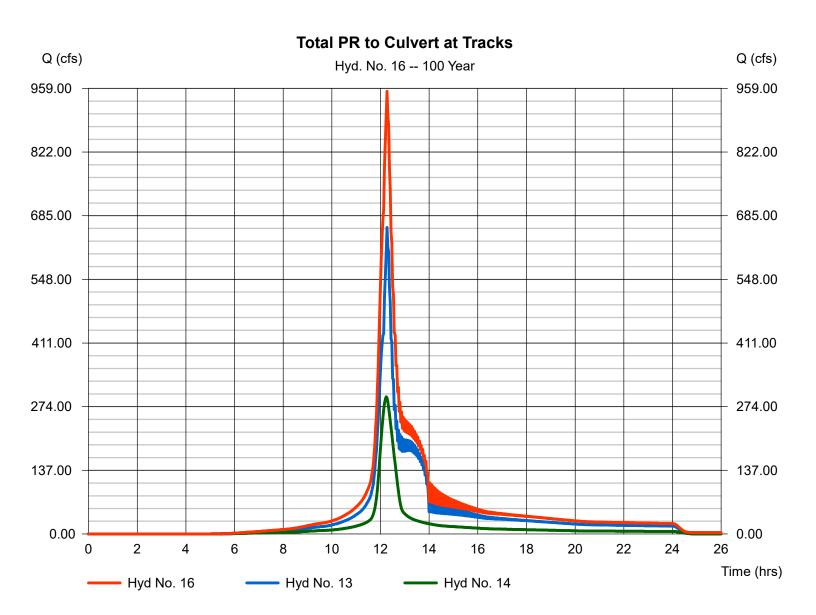


Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 15

Total EX to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 1096.75 cfs
Storm frequency	= 100 yrs	Time to peak = 12.27 hrs
Time interval	= 2 min	Hyd. volume = 5,353,085 cuft
Inflow hyds.	= 11, 14	Contrib. drain. area = 68.990 ac


129

Hydraflow Hydrographs by Intelisolve v9.22

Hyd. No. 16

Total PR to Culvert at Tracks

Hydrograph type	= Combine	Peak discharge = 952.36 cfs
Storm frequency	= 100 yrs	Time to peak = 12.27 hrs
Time interval	= 2 min	Hyd. volume = $5,326,852$ cuft
Inflow hyds.	= 13, 14	Contrib. drain. area = 68.990 ac

Hydraflow Rainfall Report

Hydraflow Hydrographs by Intelisolve v9.22

Return Period	Intensity-I	Duration-Frequency	Equation Coefficient	ts (FHA)
(Yrs)	В	D	E	(N/A)
1	37.0466	9.8000	0.9093	
2	16.9729	3.2000	0.6105	
3	0.0000	0.0000	0.0000	
5	25.3184	5.4000	0.6606	
10	54.7383	10.8000	0.8016	
25	92.8341	14.6000	0.8787	
50	41.8042	8.4000	0.6573	
100	116.5471	18.3000	0.8393	

File name: NOAA IDF Lower Gwynedd.IDF

Intensity = B / (Tc + D)^E

Return Period	Intensity Values (in/hr)											
(Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	3.20	2.45	2.00	1.69	1.47	1.30	1.17	1.06	0.97	0.90	0.83	0.78
2	4.70	3.51	2.89	2.49	2.21	2.00	1.84	1.70	1.59	1.50	1.42	1.35
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	5.39	4.16	3.45	2.99	2.65	2.40	2.20	2.04	1.90	1.79	1.69	1.60
10	5.99	4.81	4.04	3.51	3.11	2.80	2.55	2.35	2.18	2.03	1.91	1.80
25	6.80	5.57	4.73	4.12	3.66	3.30	3.01	2.76	2.56	2.38	2.23	2.10
50	7.59	6.16	5.26	4.63	4.16	3.80	3.51	3.26	3.06	2.88	2.73	2.60
100	8.30	7.05	6.15	5.47	4.93	4.50	4.14	3.84	3.59	3.36	3.17	3.00

Tc = time in minutes. Values may exceed 60.

	Rainfall Precipitation Table (in)							
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	2.70	3.25	0.00	4.07	4.76	5.74	6.57	7.46
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	0.00	0.00	1.20	0.00	0.00	0.00	0.00	0.00

Precip. file name: NOAA Precipitation Lower Gwynedd.pcp

131

APPENDIX D – OPINION OF PROBABLE COSTS

Estimated costs are for budgetary purposes only as preliminary design has not been completed for any of the projects contemplated as part of this study. Costs subject to change based on actual project scope, timing of implementation, and required state and local permitting.

PROJECT NAME: Brookside Avenue Flood Study (Houston / Knight Basin) LOCATION: Lower Gwynedd Township DATE: 5/19/2023

Engineers Opinion of Probable Cost

TOTAL
\$ 40,000.00
\$ 30,000.00
\$ 125,000.00
\$ 150,000.00
\$ 15,000.00
\$ 50,000.00
\$ 20,000.00
\$ 45,000.00
\$ 15,000.00

Construction Sub-Total	\$ 490,000.00
Contingency (10%)	\$ 49,000.00
Design / Permitting / Bid Administration	\$ 98,000.00
Total Project Budget Estimate	\$ 637,000.00

PROJECT NAME: School District Administration Building (Existing Basin Retrofit) LOCATION: Lower Gwynedd Township DATE: 5/19/2023

Engineers Opinion of Probable Cost

ltem	em Construction Items		TOTAL		
1	E&S Controls & Maintenance	\$	10,000.00		
2	Demo & Remove Concrete Channels	\$	5,000.00		
3	Amended Soils	\$	30,000.00		
4	Landscaping	\$	25,000.00		
5	Rip Rap Aprons	\$	3,500.00		
6	Infiltration Trench	\$	35,000.00		
Consta		ć	108 500 00		

Construction Sub-Total	\$	108,500.00
Contingency (10%)	\$	10,850.00
Design / Permitting / Bid Administration	\$	21,700.00
Total Project Budget Estimate		141,050.00

PROJECT NAME: Dam Englargment / Modifications LOCATION: Lower Gwynedd Township DATE: 5/19/2023

Engineers Opinion of Probable Cost

tem Construction Items		TOTAL	
E&S Controls & Maintenance	\$	40,000.00	
Clearing (4 Acres)	\$	100,000.00	
Bulk Excavation	\$	250,000.00	
Soil Export	\$	300,000.00	
Outlet Structure Modifications	\$	50,000.00	
Landscape Restoration (3" trees at 25' spacing = 280 total)	\$	190,000.00	
	E&S Controls & Maintenance Clearing (4 Acres) Bulk Excavation Soil Export Outlet Structure Modifications	E&S Controls & Maintenance\$Clearing (4 Acres)\$Bulk Excavation\$Soil Export\$Outlet Structure Modifications\$	

Construction Sub-Total	\$ 930,000.00
Contingency (10%)	\$ 93,000.00
Design / Permitting / Bid Administration	\$ 186,000.00
Total Project Budget Estimate	\$ 1,209,000.00

PROJECT NAME: Driveway Culvert Replacement (446 Marion) LOCATION: Lower Gwynedd Township DATE: 5/19/2023

Engineers Opinion of Probable Cost

Item	em Construction Items		TOTAL	
1	Demo & Removal of Existing Driveway Bridge	\$	5,000.00	
2	3'X5' Box Culvert w/ Wing Walls (12 LF)	\$	80,000.00	
3	Installation	\$	25,000.00	
4	E&S Controls	\$	2,500.00	
5	Rip Rap	\$	500.00	
6	Paving	\$	1,500.00	
6	Paving	Ş	1,50	

Construction Sub-Total	\$	114,500.00
Contingency (10%)	\$	11,450.00
Design / Permitting / Bid Administration	\$	5,000.00
Total Project Budget Estimate		130,950.00

*Prices above assume public bid and all work done by contrator. Scope could be completed by Township Public Works Department with savings related to labor costs.